Composites for prolonged release of bioactive compounds based on orchids leaves extracts and fumed silica

1Ivannikov, RV
2Laguta, IV
2Stavinskaya, ON
Anishchenko, VM
1Buyun, LI
Pakhlov, EM
1M.M. Gryshko National Botanic Garden of the NAS of Ukraine, Kyiv
2O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 4:66-73
Section: Chemistry
Language: Ukrainian

Bioactive extracts are prepared from leaves of the plants of Orchidaceae Juss. Their composition is investigated by the HPLC method. By means of adsorption of the extracts on fumed silica, bioactive composites were obtained. IR and UV/VIS spectroscopies are used for the characterization of composites, and the release of the extract components from the composites into water and ethanol solutions is studied. Phenolic acids and flavonoids in the glycoside form are the main groups of bioactive compounds revealed in the extracts; in the composites, these compounds appear to interact with silica silanol groups. Only a small part of the compounds is found to be released from the composites into aqueous media. The content of desorbed phenols in the ethanol solution was much higher, but the release of various components of the extracts occurred not simultaneously. The distinctions in the desorption of various phenols appoint to the different interactions of the substances with the silica surface and provide a possibility to use silica for a prolonged release of bioactive compounds.

Keywords: composites, fumed silica, Orchidaceae Juss. extracts, phenolic compounds

1. Kumar, S. & Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World. J. doi:
2. Proestos, C., Chorianopoulos, N., Nychas, G.J.E. & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food. Chem., 53, No. 4, pp.1190-1195. doi:
3. Williams, C.A. (1979). The leaf flavonoids orchidaceae. Phytochemistry, 18, No. 5, рр. 803-813. doi:
4. Kong, J. M., Goh, N. K., Chia, L. S. & Chia, T. F. (2003). Recent advances in traditional plant drugs and orchids. Acta Pharmacol. Sin., 24, No. 1, рр. 7-21.
5. Gutiérrez, R.M.P. (2010). Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Med. Plant. Res., 4, No. 8, pp. 592-638. doi:
6. Cherevchenko, T. M., Lavrentyeva, A. M. & Ivannikov, R. V. (2008). Biotechnology of tropical and subtropical plants in vitro. Кyiv: Naukova Dumka (in Russian).
7. Laguta, I. V., Kuzema, P. O., Stavinskaya, O. N. & Kazakova, O. A. (2009). Supramolecular complex antioxidant consisting of vitamins C, E and hydrophilic-hydrophobic silica nanoparticles. In Shpak A., Gorbyk P. (Eds.). Nanomaterials and Supramolecular Structures (pp. 269-279). Dordrecht: Springer. doi:
8. Moiseev, D. V. (2014). Determination of phenolic acids in plants by HPLC. Khimiya rastitel’nogo syr’ya, No. 3, pp. 171-174 (in Russian). doi:
9. Zhukova, O. L., Abramov, A. A., Dargaeva, T. D. & Markarian, A. A. (2006). Study on the phenol composition of the camarum polustre soil covered organs. Vestnik Moskovskogo Universiteta. Ser. 2. Khimiya, 47, No. 5, pp. 342-345 (in Russian).
10. Kuzema, P. O., Laguta, I. V., Stavinskaya, O. N., Kazakova, O. A., Borysenko, M. V. & Lupaşcu, T. (2016). Preparation and characterization of silica-Enoxil nanobiocomposites. Nanoscale. Res. Lett., 11, 68. doi:
11. Bellamy, L. (1963). Infrared spectra of complex molecules. Мoscow: Izd-vo Inostrannoy literatury (in Russian).
12. Kazitsyna, L. A. & Kupletskaya, N. B. (1971). The use of UV, IR and NMR spectroscopy in organic chemistry. Мoscow: Vysshaya shkola (in Russian).