Equivalence groupoids of classes of nonlinear second-order evolution equations

1Vaneeva, OO
1Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 5:3-10
https://doi.org/10.15407/dopovidi2019.05.003
Section: Mathematics
Language: Ukrainian
Abstract: 

We study transformational properties of the general class of (1+1)-dimensional nonlinear second-order evolution equations. The chain of nested normalized subclasses of this class is constructed. The equivalence groupoids of the respective normalized subclasses are found. For two subclasses that are of interest for applications, but not normalized, the equivalence groups are derived.

Keywords: admissible transformations, equivalence group, equivalence groupoid, evolution equations, reaction– diffusion–convection equations
References: 

1. Popovych, R. O. (2006). Classification of admissible transformations of differential equations. Collection of Works of Institute of Mathematics, 3, No. 2, pp. 239-254.
2. Popovych, R. O., Kunzinger, M. & Eshraghi, H. (2010). Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math, 109, pp. 315-359. doi: https://doi.org/10.1007/s10440-008-9321-4
3. Popovych, R. O. & Bihlo, A. (2012). Symmetry preserving parametrization schemes. J. Math. Phys., 53, No. 7, 073102, 36 p. doi: https://doi.org/10.1063/1.4734344
4. Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow: Nauka (in Russian).
5. Vaneeva, O. O., Popovych, R. O. & Sophocleous, C. (2014). Equivalence transformations in the study of integrability. Phys. Scr., 89, No. 3, 038003, 9 p. doi: https://doi.org/10.1088/0031-8949/89/03/038003
6. Vaneeva, О. О. & Zhalij, O. Yu. (2014). Group analysis of a class of reaction-diffusion equations with variable coefficients. Dopov. Nac. akad. nauk. Ukr., No. 10, pp. 12-20 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.10.012
7. Vaneeva, O., Boyko, V., Zhalij, A. & Sophocleous, C. (2019). Classification of reduction operators and exact solutions of variable coefficient Newell–Whitehead–Segel equations. J. Math. Anal. Appl., 474, No. 1, pp. 264-275. doi: https://doi.org/10.1016/j.jmaa.2019.01.044
8. Vaneeva, O. & Pošta, S. (2017). Equivalence groupoid of a class of variable coefficient Korteweg–de Vries equations. J. Math. Phys., 58, No. 10, 101504, 12 p. doi: https://doi.org/10.1063/1.5004973
9. Kingston, J. G. (1991). On point transformations of evolution equations. J. Phys. A: Math. Gen., 24, No. 14, pp. L769-L774. doi: https://doi.org/10.1088/0305-4470/24/14/003
10. Kingston, J. G. & Sophocleous, C. (1998). On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 31, No. 6, pp. 1597-1619. doi: https://doi.org/10.1088/0305-4470/31/6/010
11. Popovych, R. O. & Samoilenko, A. M. (2008). Local conservation laws of second-order evolution equations. J. Phys. A: Math. Theor., 41, No. 36, 362002, 11 p. doi: https://doi.org/10.1088/1751-8113/41/36/362002
12. Popovych, R. O. & Ivanova, N. M. (2004). New results on group classification of nonlinear diffusion-convection equations. J. Phys. A: Math. Gen., 37, No. 30, pp. 7547-7565. doi: https://doi.org/10.1088/0305-4470/37/30/011