^{1}Barannyk, AF^{2}Barannyk, TA^{3}Yuryk, II^{1}Institute of Mathematics, Pomeranian University, Slupsk, Poland^{2}V.G. Korolenko Poltava National Pedagogical University^{3}National University of Food Technologies, Kyiv |

Dopov. Nac. akad. nauk Ukr. 2019, 5:11-17 |

https://doi.org/10.15407/dopovidi2019.05.011 |

Section: Mathematics |

Language: English |

Abstract: A method for construction of exact solutions to the nonlinear heat equation u |

Keywords: exact solutions, generalized variable separation, group-theoretic methods, nonlinear heat equation |

1. Polyanin, A. D. & Zaitsev, V. F. (2004). Handbook of nonlinear partial differential equations. Boca Raton, FL: Chapman & Hall/CRC. doi: https://doi.org/10.1201/9780203489659

2. Galaktionov, V. A. & Svirshchevskii, S. R. (2007). Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. CRC Press. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton, FL: Chapman & Hall/CRC.

3. Dorodnitsyn, V. A. (1979). Group properties and invariant solutions of an equation of nonlinear heat transport with a source or a sink. Preprint. AS USSR, Institute of Applied Mathematics; No 57. Moscow (in Russian).

4. Dorodnitsyn, V. A. (1982). On invariant solutions of the equation of non-linear heat conduction with a source. U.S.S.R. Comput. Math. Math. Phys., 22, No. 6, pp. 115-122. doi: https://doi.org/10.1016/0041-5553(82)90102-1

5. Philip, J. R. (1960). General method of exact solution of the concentration-dependent diffusion equation. Aust. J. Phys., 13, No. 1, pp. 13-20. doi: https://doi.org/10.1071/PH600001

6. Barannyk, A., Barannyk, T. & Yuryk, I. (2011). Separation of variables for nonlinear equations of hyperbolic and Korteweg–de Vries type. Rep. Math. Phys., 68, pp. 97-105. doi: https://doi.org/10.1016/S0034-4877(11)60029-3

7. Barannyk, A. F., Barannyk, T. A. & Yuryk, I. I. (2013). Generalized separation of variables for nonlinear equation. Rep. Math. Phys., 71, pp. 1-13. doi: https://doi.org/10.1016/S0034-4877(13)60018-X