On the methodology of tensoresistance determination for n-Ge and n-Si in the crystallographic directions 〈110〉

TitleOn the methodology of tensoresistance determination for n-Ge and n-Si in the crystallographic directions 〈110〉
Publication TypeJournal Article
Year of Publication2019
AuthorsGaidar, GP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2019.05.067
Issue5
SectionPhysics
Pagination67-74
Date Published05/2019
LanguageUkrainian
Abstract

In the framework of the theory of anisotropic scattering, the expressions useful for the practical application are obtained for many-valley semiconductors such as n-Ge and n-Si. These relations allow us to calculate the tensoresistance in saturation for crystallographic directions, where this effect is very small, by using the measurement results of tensoresistance in other crystallographic directions, where this effect has large values.

Keywordsanisotropy parameter of mobility, germanium, silicon, tensoresistance
References: 

1. Baranskii, P. I., Fedosov, A. V. & Gaidar, G. P. (2000). Physical properties of silicon and germanium crystals in the fields of effective external influence. Lutsk: Nadstyria (in Ukrainian).
2. Kikoin, I. K. & Lazarev, S. D. (1965). New photopiezoelectric effect in semiconductors. Zhurn. eksperim. i teoret. fiziki, 20, No. 2, pp. 780-781 (in Russian).
3. Fedosov, S. A., Khvyshchun, M. V. & Shynkaruk, S. V. (2010). Effect of the concentration of impurities on the change in position of the deep level Ec – 0.2 eV under uniaxial elastic deformation in n-Ge 〈Au〉. Nauk. visnyk Volynskoho nats. un-tu im. Lesi Ukrainky. Fiz. nauky, No. 29, pp. 37-43 (in Ukrainian).
4. Thompson, S., Anand, N., Armstrong, M., Auth, C., Arcot, B., Alavi, M., Bai, P., Bielefeld, J., Bigwood, R., Brandenburg, J., Buehler, M., Cea, S., Chikarmane, V., Choi, C., Frankovic, R., Ghani, T., Glass, G., Han, W., Hoffmann, T., Hussein, M., Jacob, P., Jain, A., Jan, C., Joshi, S., Kenyon, C., Klaus, J., Klopcic, S., Luce, J., Ma, Z., Mcintyre, B., Mistry, K., Murthy, A., Nguyen, P., Pearson, H., Sandford, T., Schweinfurth, R., Shaheed, R., Sivakumar, S., Taylor, M., Tufts, B., Wallace, C., Wang, P., Weber, C. & Bohr, M. (2002). A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. Proceedings of the International Electron Devices Meeting Technical Digest (pp. 61-64), San Francisco. doi: https://doi.org/10.1109/IEDM.2002.1175779
5. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S. & Bohr, M. (2003). A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. Proceedings of the International Electron Devices Meeting Technical Digest (pp. 978-980), Washington. doi: https://doi.org/10.1109/IEDM.2003.1269442
6. Nebel, C. E. (2013). Valleytronics: Electrons dance in diamond. Nat. Mater., 12, No. 8, pp. 690-691 doi: https://doi.org/10.1038/nmat3724
7. Culcer, D., Saraiva, A. L., Koiller, B., Hu, X. & Sarma, S. D. (2012). Valley-based noise-resistant quantum computation using Si quantum dots. Phys. Rev. Lett., 108, No. 12, 26804. doi: https://doi.org/10.1103/PhysRevLett.108.126804
8. Gaidar, G. P. (2015). Tensoresistance as an information source on mobility anisotropy parameter K = μ⊥/μ|| in multivalley semiconductors and certain new possibilities of deformation metrology. Surf. Eng. Appl. Electrochem., 51, No. 2, pp. 188-195. doi: https://doi.org/10.3103/S1068375515020039
9. Gaidar, G. P. & Baranskii, P. I. (2014). Thermoelectric properties of transmutation doped silicon crystals. Physica B: Condensed Matter, 441, pp. 80-88. doi: https://doi.org/10.1016/j.physb.2014.02.011
10. Gaidar, G. P. & Baranskii, P. I. (2014). Concentration dependences of the anisotropy parameter of mobility K = μ⊥/μ || and the anisotropy parameter of electron-phonon drag thermopower M = α || ф/α⊥ ф in n-Ge and n-Si. J. Thermoelectricity, No. 5, pp. 21-28.
11. Fedosov, A. V., Lunov, S. V. & Fedosov, S. A. (2010). Determination of the constant of the deformation potential Ξd in n-Ge by the piezoresistance method. Nauk. visnyk Volynskoho nats. un-tu im. Lesi Ukrainky. Fiz. nauky, No. 6, pp. 38-44 (in Ukrainian).
12. Budzuliak, S. I. (2012). Tensoresistive effects in the strongly deformed n-Si and n-Ge crystals. Fizyka i khimiia tverdoho tila, 13, No. 1, pp. 34-39 (in Ukrainian).
13. Gaidar, G. P. (2009). On methodology of measuring parameters with the increased sensitivity to residual or irradiation induced inhomogeneities in semiconductors. Semiconductor Physics, Quantum Electronics & Optoelectronics, 12, No. 4, pp. 324-327.
14. Baranskii, P. I., Yelizarov, A. I. & Kolomoets, V. V. (1974). Determination of the characteristic parameters μ || and μ⊥ of the single isoenergetic ellipsoid in multi-valley semiconductors. Fizika i tekhnika poluprovodnikov, 8, No. 1, pp. 200-202 (in Russian).
15. Baranskii, P. I., Buda, I. S., Dahovskiy, I. V. & Kolomoets, V. V. (1977). Electrical and galvanomagnetic phenomena in anisotropic semiconductors. Kiev: Naukova Dumka (in Russian).