Properties of the low molecular weight carotovoricins from the natural isolates Pectobacterium carotovorum subsp. carotovorum

TitleProperties of the low molecular weight carotovoricins from the natural isolates Pectobacterium carotovorum subsp. carotovorum
Publication TypeJournal Article
Year of Publication2019
AuthorsMaksymenko, LA, Gorb, TY
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2019.06.067
Issue6
SectionBiology
Pagination67-74
Date Published06/2019
LanguageUkrainian
Abstract

Colicin-like carotovoricins (CCTV) has been induced by the nalidixic acid treatment of Pectobacterium carotovorum subsp. carotovorum natural isolates from the different regions of Ukraine. It has been found that CCTV exhibit the different level of killer activity against the indicator strain of P. carotovorum and Escherichia coli. CCTV isolated from total fractions of P. carotovorum J2 and natural bacterial isolates from different regions of Ukraine had the same set of proteins with molecular masses of 18, 20, 24, 30, 46, and 54 kDa. After the purification carried out at DEAE-sepharose, the active components with molecular masses of 18, 24, 30, and 38 kDa were isolated. Immunoblot analysis with antiserum revealed serologically related protein components with molecular masses of 10, 11, 18, and 20 kDa in low molecular weight carotovoricins and bacteriophage ZF 40. It has been established that cartovoricins also contain proteins that are not identical, but serologically related to ZF40.

Keywordscolicin-like carotovoricins (CCTV), killer activity, Pectobacterium carotovorum subsp. carotovorum, proteins, serological similarity
References: 

1. Tovkach, F. I. (2002). Defective lysogeny in Erwinia carotovora. Microbiology, 71, No. 3, pp. 359-367 (in Russian).
2. Lu, F. M. & Chak, K. F. (1996). Two overlapping SOS boxes in Col E1 operon are responsible for the viability of cells harbor ring the Colplasmid. Mol. Gen. Genet., 251, No. 4, pp. 407-411. doi: https://doi.org/10.1007/BF02172368
3. Zakharova, S. D. & Gramer, W. A. (2002). Colicin crystal structure: pathways and mechanisms for colicin insertion into membranes. Biochim. Biophys. Acta, 1565, No. 2, pp. 333-346. doi: https://doi.org/10.1016/S0005-2736(02)00579-5
4. Chan, Y. C., Wu, J. L., Wu, H. P., Tzeng, K. C. & Chuang, D. Y. (2011). Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiol., 12, pp. 11-99. doi: https://doi.org/10.1186/1471-2180-11-99
5. Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, Sh., Ohnishi, M., Murata, T., Mori, H. & Hayashi, T. (2000). The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol., 38, No. 2, pp. 213-231. doi: https://doi.org/10.1046/j.1365-2958.2000.02135.x
6. Maksymenko, L. A. & Tovkach, F. I. (2012). Serological relationship of bacteriocins, proteins of Erwinia carotovora isolated from various ecological regions and with structural proteins of bacteriophage ZF 40. Dopov. Nac. akad. nauk Ukr., No. 7, pp. 158-163 (in Russian).
7. Maksymenko, L. A.,Parkhomenko, N. I., Moroz, S. N. & Gorb, T. E. (2013). Properties investigation of isolates of pectolytic phytopathogenic bacteria obtained in Ukraine. Microbiol. Zhurn., 75, No. 6, pp. 66-72 (in Ukrainian).
8. Maksymenko, L. A., Balko, O. I. & Balko, O. B. (2017). Pectobacterium carotovorum subsp. carotovorum lowmolecular-weight carotovoricins. Microbiol. and biotechnol., No. 3, pp. 75-83 (in Ukrainian). doi: https://doi.org/10.18524/2307-4663.2017.3(39).110912
9. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature, 227, No. 5259, pp. 680-685. doi: https://doi.org/10.1038/227680a0
10. Panshchina, A. I., Tovkach, F. I., Romaniuk, L. V. & Maksymenko, L. A. (2007). Physico-chemical properties of temperate bacteriophage ZF40 of Erwinia carotovora. Microbiol. Zhurn., 69, No. 2, pp. 15-22 (in Russian).
11. Towbin, H., Stalhelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and applications. Proc. Nat. Acad. Sci. USA, 76, No. 9, pp. 4350-4354. doi: https://doi.org/10.1073/pnas.76.9.4350
12. Maksymenko, L. A. & Romaniuk, L. V. (2016). The relation between the serological similarity of proteins and the adsorption of particles of Pectobacterium carotovorum J2 bacteriocins and bacteriophage ZF40. Dopov. Nac. akad. nauk Ukr., No. 12, pp. 90-95 (in Russian). doi: https://doi.org/10.15407/dopovidi2016.12.090
13. Roh, E., Park, T. H., Kim, Mi, Lee, S., Ryu, S., Oh, Cs., Rhee, S., Kim, Dh., Park, Bs. & Heu, S. (2010). Characterization of a new bacteriocin, carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc 21. Appl. Environ. Microbiol., 22, No. 76, pp. 7541-7549. doi: https://doi.org/10.1128/AEM.03103-09
14. Chuang, D.-Y., Chien, Y.-C. & Wu, H.-P. (2007). Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J. Bacteriol., 189, No. 2, pp. 620-626. doi: https://doi.org/10.1128/JB.01090-06
15. Ito, K., Kageyama, M. & Egami, F. (1970). Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J. Gen. Appl. Microbiol., 16, pp. 205-214. doi: https://doi.org/10.2323/jgam.16.3_205