On a possibility of the blocking of DNA specific recognition sites by hydrogen peroxide molecules during ion beam therapy

Zdorevskyi, OO
Piatnytskyi, DV
Volkov, SN
Dopov. Nac. akad. nauk Ukr. 2019, 6:82-89
https://doi.org/10.15407/dopovidi2019.06.082
Section: Biophysics
Language: English
Abstract: 

Ion beam therapy is one of the most effective methods in treatment of cancer diseases. But up to nowadays, the mechanism of action of heavy ions on cancer cells has not been determined yet. Study of water fragmentation processes during ion beam therapy shows that, among different oxygen species, the significant amount of hydrogen peroxide molecules (H2O2) occurs in the сell medium. In the present work, the competitive interaction of H2O2 and H2O molecules with specific DNA recognition sites is studied. Interaction energies of complexes consisting of nucleic bases (adenine, thymine, guanine, and cytosine) together with hydrogen peroxide and water molecules are calculated, using the method of atom-atom potential functions and density functional theory. The atomic groups of nuc leic bases that are more energetically favorable to be bound by hydrogen peroxide rather than by water molecule are found. Formation of such complexes can block the process of DNA replication on different stages and can be one of the mechanisms of ion beam action on cancer cells.

Keywords: cancer therapy, DNA nucleic bases, hydrogen peroxide
References: 

1. Bragg, W. H. & Kleeman, R. (1904). LXXIV. On the ionization curves of radium. London, Edinburgh, Dublin. Philos. Mag. J. Sci., 48, No. 8, pp. 726-38. doi: https://doi.org/10.1080/14786440409463246
2. Solov’yov, A. V., Surdutovich, E., Scifoni, E., Mishustin, I. & Greiner, W. (2009). Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys., 79, No. 1, 011909. doi: https://doi.org/10.1103/PhysRevE.79.011909
3. Krämer, M. & Durante, M. (2010). Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D, 60, No. 1, pp. 195-202. doi: https://doi.org/10.1140/epjd/e2010-00077-8
4. Boscolo, D., Krämer, M., Durante, M., Fuss, M. C. & Scifoni, E. (2018). TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets. Chem. Phys. Lett., 698, pp. 11-18. doi: https://doi.org/10.1016/j.cplett.2018.02.051
5. Piatnytskyi, D. V., Zdorevskyi, O. O., Perepelytsya, S. M. & Volkov, S. N. (2015). Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action. Eur. Phys. J. D, 69, No. 11, pp. 255. doi: https://doi.org/10.1140/epjd/e2015-60210-9
6. Zdorevskyi, O. & Volkov, S. N. (2018). Possible scenarios of DNA double-helix unzipping process in singlemolecule manipulation experiments. Eur. Biophys. J., 47, No. 8, pp. 917-24. doi: https://doi.org/10.1007/s00249-018-1313-3
7. Zhurkin, V. B., Poltev, V. I. & Florent’ev, V. L. (1980). Atom-atomic potential functions for conformational calculations of nucleic acids. Mol. Biol. (Mosk.), 14, No. 5, pp. 1116-30.
8. Poltev, V. I. & Shulyupina, N. V. (1986). Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. J. Biomol. Struct. Dyn., 3, No. 4, pp. 739-65. doi: https://doi.org/10.1080/07391102.1986.10508459
9. Moin, S. T., Hofer, T. S., Randolf, B. R. & Rode, B. M. (2012). An ab initio quantum mechanical charge field molecular dynamics simulation of hydrogen peroxide in water. Comput. Theor. Chem., 980, pp. 15-22. doi: https://doi.org/10.1016/j.comptc.2011.11.006
10. Hingerty, B. E., Ritchie, R. H., Ferrell, T. L. & Turner, J. E. (1985). Dielectric effects in biopolymers: The theory of ionic saturation revisited. Biopolymers, 24, No. 3, pp. 427-439. doi: https://doi.org/10.1002/bip.360240302
11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A.D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Laham, A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). Gaussian 03, Revision C. 02. Wallingford, CT.
12. Kryachko, E. S. & Volkov, S. N. (2001). Preopening of the DNA base pairs. Int. J. Quantum Chem, 82, No. 4, pp. 193-204. doi: https://doi.org/10.1002/qua.1040
13. Giudice, E., Várnai, P. & Lavery, R. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res., 31, No. 5, pp. 1434-43. doi: https://doi.org/10.1093/nar/gkg239
14. Dobado, J. A. & Molina, J. (1999). Adenine-hydrogen peroxide system: DFT and MP2 investigation. J. Phys. Chem. A, 103, No. 24, pp. 4755-61. doi: https://doi.org/10.1021/jp990671n
15. Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA, 73, No. 3, pp. 804-808. doi: https://doi.org/10.1073/pnas.73.3.804