Magnetic features of NiCx carbide with the sphalerite-type defect structure

Nakonechna, ОІ
Belyavina, NN
1Ostapenko, RV
Kuryliuk, AM
2Makara, VA
1A. V. Dumansky Institute of Colloid Chemistry and Water Chemistry of the NAS of Ukraine, Kyiv
2Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 6:36-42
https://doi.org/10.15407/dopovidi2019.06.036
Section: Materials Science
Language: Ukrainian
Abstract: 

Magnetic susceptibility of nanoscaled NiCx carbide (x ≤ 0.33) with a defective cubic structure of the sphalerite type (a = 0.3549 nm) synthesized from elemental nickel powder and multiwalled carbon nanotubes in a highenergy planetary ball mill has been studied. The two-stage character of the experimental polytherms of magnetic susceptibility χ(T) is found. It is established that the milling time of the initial Ni-CNT charge in a high-energy ball mill is accompanied by a change in the magnetic characteristics, in particular, by increasing the partial paramagnetic moment and the Curie temperature of the material studied. The revealed effect is explained by the fact that the formation of a crystalline lattice of NiCx carbide at the reaction milling is defined by the carbon atoms, which partially fill the tetrahedral voids of the original nickel lattice, by gradually destroying certain Ni—Ni bonds, thereby increasing the number of electrons with unpaired spins that determine the paramagnetic characteristics of the material obtained.

Keywords: Curie temperature, magnetic moment, magnetic susceptibility, mechanochemical synthesis, NiCx carbides
References: 

1. Abaeva, L. F., Shumskyi, V. I., Petritskaya, E. N. et. al. (2010). Nanoparticles amd nanotechnologies in medicine today and tomorrow. Almanakh klinich. meditsiny, 22, pp. 10-6 (in Russian).
2. Mamonova, I. A. & Babushkina, I. V. (2012). Experimental study of antibacterial action of nickel nanoparticles on Pseudomonas aeruginosa clinical strains. Fundamentalnye issledovaniya, No. 1-2, pp. 174-178 (in Russian). Retrieved from http://fundamental-research.ru/ru/article/view?id=29422
3. Murzagaleev, Т. М., Vosmerikov, A. V., Golovko, A. K. et.al. (2011). Heavy oil cracking in the presence of nickel nanopowders. Neftepererabotka I neftehimiya. Nauchno-tehnichiskie dostizheniya I peredovoy opyt, No. 4, pp. 11-13 (in Russian).
4. Yue, L., Sabiryanov, R., Kirkpatrick, E. M. & Leslie-Pelecky, D. L. (2000). Magnetic properties of disordered Ni3C. Phys. Rev. B, 62(13), 8969. doi: https://doi.org/10.1103/PhysRevB.62.8969
5. Nakonechna, О. І., Belyavina, N. N., Dashevskyi, M. M., Kurylyuk, A. M. & Makara, V. A. (2019). Mechanochemical synthesis of NiCx carbide with the sphalerite-type defect structure Dopov. Nac. akad. nauk. Ukr., No. 4, pp. 50-56 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2019.04.050
6. Fonseca, F. C., Goya, G. F., Jardim, R. F., Muccillo, R., Carreno, N. L. V., Longo, E. & Leite, E. R. (2002). Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B, 66(10), 104406. doi: https://doi.org/10.1103/PhysRevB.66.104406
7. Novikov, S. I., Konev, A. S., Ujmin, M. A. et. al. (2017). Magnetic properties of Ni-C nanocomposites. Mezhdunarodnyi zhurnal prokladnykh and fundamentalnykh issledovaniy, No. 12, pp. 247-251 (in Russian).
8. Fedosyuk, V. M., Danishevskyi, A. M., Kurdyukov, D. A. et.al. (2003). Magnetic properties of nickel clusters in nanoporous carbon. Fizika tverdogo tela, 45, No. 9, pp. 1667-1670 (in Russian). doi: https://doi.org/10.1134/1.1611245