Changes in the ionome of genetically modified corn plants with double-stranded RNA-suppressor of proline dehydrogenase gene

Schwartau, VV
Mykhalska, SI
Mykhalska, LM
Dopov. Nac. akad. nauk Ukr. 2019, 7:97-104
https://doi.org/10.15407/dopovidi2019.07.097
Section: Biology
Language: Ukrainian
Abstract: 

The corn transgenic plant ionome with double-stranded (ds) RNA suppressor of the proline dehydrogenase ge ne obtained by the Agrobacterium-mediated transformation in planta plants of inbred line 370 of the Institute of Plant Physiology and Genetics NAS of Ukraine selection is studied. The analysis of seed T3 generation of corn plants with partial suppression of the activity of proline dehydrogenase and an increased resistance to the osmotic stress has shown differential changes of individual components of the ionome, namely: an increase in the content of Mg, Mn, Fe, Cu, and Mo, decreasing the content of Ca, K, and Na, and a significant reduction in the level of heavy metal ions: Ni, Ba, Cd, Sr. The growth of the content of the inorganic components of redox components, Mn, Cu, Fe, with the exception of Zn, is important for the formation of increased plant’s osmoresistance. It can be predicted that quantitative changes in the inorganic components of redox systems in genetically modified plants may be part of the increased resistance to osmotic stress. Increasing the resistance of corn will allow the introduction of mineral nutrition systems with high levels of assimilation of individual ions, which are based on the growth in local concentrations of individual elements and are characterized by increased levels of resistance to a moisture deficit. Reducing the content of a number of heavy metals in plants will allow the more extensive use of phosphorus fertilizers in the systems of nutrition that can be dangerous for soils and plants through the contamination by heavy metals.

Keywords: corn, ionome, osmotolerance, siRNA, transgenesis
References: 

1. Salt, D. E., Baxter, I. & Lahner, B. (2008). Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol., 59, pp. 709-733. https://doi.org/10.1146/annurev.arplant.59.032607.092942
2. Baxter, I. & Dilkes, B. P. (2012). Elemental profiles reflect plant adaptations to the environment. Science, 336, Iss. 6089, pp. 1661-1663. https://doi.org/10.1126/science.1219992
3. Williams, L. & Salt, D. E. (2009). The plant ionome coming into focus. Curr. Opin. Plant Biol., 12, No. 3, pp. 247-249. https://doi.org/10.1016/j.pbi.2009.05.009
4. Huang, X.-Y. & Salt, D. E. (2016). Plant ionomics: From elemental profiling to environmental adaptation. Mol. Plant., 9, Iss. 6, pp. 787-797. https://doi.org/10.1016/j.molp.2016.05.003
5. Pokhylko, S. Yu., Schwartau, V. V., Mykhalska, L. M., Dugan, O. M., & Morgan, B. V. (2016). ICP-MS analysis of bread wheat carrying the GPC-B1 gene of Triticum turgidum ssp. dicoccoides. Biotechnologia acta, 9, No. 5, pp. 64-69. https://doi.org/10.15407/biotech9.05.064
6. Chumakov, M. I., Rozhok, N. A., Veliko, V. A., Tyrnov, V. S. & Volokhina, I. V. (2006). Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ. J. Genet., 42, No. 8, pp. 893-897.
7. Tishchenko, O. M., Komisarenko, А. G., Mykhalska, S. I., Sergeeva, L. E., Adamenko, N. I., Morgun, B. V. & Kochetov, A. V. (2014). Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in planta using strain of LВА4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene. Tsitol. Genet., 48, No. 4, pp. 19-30 (in Russian).
8. Mykhalska, S. I., Sergeeva, L. E., Matveeva, А. Yu., Kobernyk, N. I., Kochetov, A. V., Tishchenko, O. M. & Morgun, V. V. (2014). The elevation of free proline content in osmotolerant transgenic corn plants with dsRNA suppressor of proline dehydrogenase gene. Fiziologiya rastenii i genetika, 46, No. 6, pp. 482-489 (in Russian).
9. Morgun, B. V. & Tishchenko, O. M. (2014). Molecular biotechnology to improve the sustainability of cultural cereals to osmotic stress. Kyiv: Logos (in Russian).
10. Morgun, V. V., Dubrovna, О. V. & Morgun, B. V. (2016). The modern biotechnologies of producing wheat plants resistant to stresses. Fiziologiya rastenii i genetika, 48, No. 3, pp. 196-214 (in Ukrainian).
11. Brodersen, P. & Voinnet O. (2006). The diversity of RNA silencing pathways in plants. Trends Genet., 22, No. 5, pp. 268-280.
12. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, pp. 1279-1291.
13. Hamilton, A. J. & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, No. 5441, pp. 950-952.
14. Yin, X.-Y., Yang, A.-F., Zhang, K.-W. & Zhang, J.-R. (2004). Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot. Sin., 46, No. 7, pp. 854-861.
15. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, No. 1, pp. 1-17.