Silica effects on spectral and photophysical properties of rhodamine 6G in polyurethane matrix

Bezrodna, TV
Antonenko, OI
1Kosyanchuk, LF
Roshchin, OM
2Bezrodnyi, VI
2Negriyko, AM
Yaskovets, AO
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
2Institute of the Physics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 7:36-43
https://doi.org/10.15407/dopovidi2019.07.036
Section: Physics
Language: Russian
Abstract: 

The organo-inorganic nanocomposite based on rhodamine 6G with xanthene dye and polyurethane acrylate doped with silicon dioxide has been developed. Spectral and photophysical properties of the dye in the polymer matrix have been investigated in the dependence on the concentration of SiO2 nanoparticles (1, 2, 4, and 8 mass. %). Aerosil concentration growth results in an increase of the R6G monomer–dimer ratio, which is seen on the absorption curves as an intensification of the spectral peak at 535 nm (a monomer state) relative to the spectral component at 505 nm (an aggregated state of the H-type). Adding the SiO2 nanoparticles to the polymer matrix enhances the dye luminescence intensity almost twice for a SiO2 concentration of 8 mass. %. This effect is caused by a decrease of the dimer luminescence reabsorption, since the dimer amount is smaller in the orga noinorganic nanocomposite, compared to the pure PUA. The photostability growth is observed for the R6G dye in the PUA polymer matrix doped with aerosil nanoparticles. Application of the organo-inorganic materials with the SiO2 concentration in polyurethane acrylate up to 8 mass % is shown to be promising for the development of efficient active elements for the dye lasers, pumped by the second harmonic of a neodymium laser.

Keywords: aerosil, luminescence, photostability, polyurethane acrylate, rhodamine 6G
References: 

1. Bondar, M. V. & Przhonska, O. V. (1998). Spectral-luminescence and lasing properties of the pyrromethene dye PM-567 in ethanol and in a polymer matrix. Quant. Electron., 28, No. 9, рр. 753-756. doi: https://doi.org/10.1070/QE1998v028n09ABEH001318
2. Nikolaev, S. V., Pozhar, V. V., Dzyubenko, M. I. & Nikolaev, K. S. (2018). Solid active media for tunable lasers on the basis of dye-doped polyuretanes. Radiofizika i elektronika, 28, No. 9, рр. 753-756 (in Russian). doi: https://doi.org/10.15407/rej2018.04.095
3. Bezrodnyi, V. I., Stratilat, M. S., Negriyko, A. M., Kosyanchuk, L. F., Klishevich, G. V. & Todosiichuk, T. T. (2013). Effects of an aliphatic polyurethane matrix on spectral and photophysical characteristics of laser dyes. Dopov. Nac. akad. nauk. Ukr., No. 7, рp. 108-113 (in Russian).
4. Bezrodnyi, V. I., Negriyko, A. M. & Kosyanchuk, L. F. (2016). Investigations of passive Q-switching in YAG:Nd lasers with Q-switches based on dye-doped polyurethane matrices. Dopov. Nac. akad. nauk. Ukr., No. 9, рp. 61-68 (in Russian). doi: https://doi.org/10.15407/dopovidi2016.09.061
5. Suratwala, T., Gardlund, Z., Davidson, K. & Uhlmann, D. R. (1998). Silylated coumarin dyes in sol-gel hosts. 2. Photostability and sol-gel processing. Chem. Mater., 10, No. 1, pp. 199-209. doi: https://doi.org/10.1021/cm970340s
6. Kosyanchuk, L., Bezrodna, T., Stratilat, M., Menzheres, G., Kozak, N. & Todosiichuk, T. (2014). Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J. Polym. Res., No. 21, pp. 564-570. doi: https://doi.org/10.1007/s10965-014-0564-7
7. Al Dwayyan, A. S., Qaid Saif, M. H., Majeed Khan, M. A. & Al Salhi, M. S. (2012). Structural and spectral investigations of Rhodamine (Rh6G) dye-silica core–shell nanoparticles. Optical Materials, 34, No. 5, pp. 761-768. doi: https://doi.org/10.1016/j.optmat.2011.11.003
8. Bezkrovnaya, O. N., Pritula, I. M., Puzikov, V. M., Maslov, V. V., Kolybaeva, M. I., Gurkalenko, Yu. A., Vovk, O. M., Lopyn, A. V. & Plaksii, A. G. (2010). SiO2-based active media with incorporated rhodamine and pyrenetetrasulfonic acid molecules. Nanosystems, Nanomaterials, Nanotechnologies, 8, No. 4, pp. 927-940. (in Russian).
9. Bezkrovnaya, O. N., Pritula, I. M., Plaksii, A. G., Puzikov, V. M., Gurkalenko, Yu. A., Kachkovskiy, A. D., Slominsky, Yu. L. & Kanaev, A. (2014). Spectral properties of nanoporous SiO2 matrices with polymethine dye molecules. Funct. Mater., 21, No. 1, pp. 36-41. doi: https://doi.org/10.15407/fm22.01.036
10. Pavlopoulos, T. G. (2002). Scaling of dye lasers with improved laser dyes. Progr. Quantum. Electron., 26, No. 4-5, pp. 193-224. doi: https://doi.org/10.1016/S0079-6727(02)00005-8
11. Bezrodnyi, V. I., Bondar, M. V. & Przhonska, O. V. (1990). Polymer lasers: photophysics of the active medium, optical schemes and generation parameters. Bulletin USSR Academy of Sciences. Phys. Ser., 54, No. 8, pp. 1476-1483. (in Russian).
12. Bezrodnyi, V. I., Stratilat, M. C., Kosyanchuk, L. F., Negriyko, A. M., Klishevich, G. V. & Todosiichuk, T. T. (2015). Spectral and photophysical properties of phenalenone dyes in aliphatic polyurethane matrix. Funct. Mater., 22, No. 2, pp. 212-218. doi: https://doi.org/10.15407/fm22.02.212
13. Chuichay, P., Vladimirov, E., Siriwong, K., Hannongbua, S. & Rösch, N. (2006). Molecular-dynamics simulations of pyronine 6G and rhodamine 6G dimers in aqueous solution. J. Mol. Model., No. 12, pp. 885-896. doi: https://doi.org/10.1007/s00894-005-0053-3
14. Reisfeld, R., Weiss, A., Saraidarov, T., Yariv, E. & Ishchenko, A. A. (2004). Solid-state lasers based on inorganic-organic hybrid materials obtained by combined sol–gel polymer Technology. Polym. Adv. Technol., No. 15, pp. 291-301. doi: https://doi.org/10.1002/pat.463