Toward the theory of the Sobolev classes with critical exponent

Afanas’eva, OS
1Ryazanov, VI
2Salimov, RR
1Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk
2Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2019, 8:3-8
https://doi.org/10.15407/dopovidi2019.08.003
Section: Mathematics
Language: Russian
Abstract: 
It is established that an arbitrary homeomorphism f in the Sobolev class \[W^{1,n-1}_{loc}\] with the outer dilatation \[K_{0}(x,f) \in L^{n-1}_{loc}\] is the socalled
lower Q - homeomorphism with \[Q=K_{0} (x,f)\] and the ring Q* homeomorphism with \[Q*=K^{n-1}_{0} (x,f)\]. These results make it possible to research the local and boundary behaviors of the
mappings \[W^{1,n-1}_{loc}\]

 

 

 

 

Keywords: critical exponent, lower and ring Q homeomorphisms, outer and inner dilatations, Sobolev’s classes
References: 

1. Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. New York: Springer.
2. Rado, T. & Reichelderfer, P. V. (1955). Continuous transformations in analysis. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-85989-2
3. Saks, S. (1949). Integral teory. Ìoscow: Izdvo Inostr. lit. (in Russian).
4. Ryazanov, V., Srebro, U. & Yakubov, E. (2005). On ring solutions of Beltrami equation. J. Anal. Math., 96, pp. 117150. doi: https://doi.org/10.1007/BF02787826
5. Ryazanov, V. I. & Sevostyanov, E. A. (2007). Equicontinuous classes of ring homeomorphisms. Sib. matem. zhurn., 48, No. 6, pp. 13611376. doi: https://doi.org/10.1007/s11202-007-0111-4
6. Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami equation: A geometric approach. Developments of Mathematics, Vol. 26. New York etc.: Springer. doi: https://doi.org/10.1007/978-1-4614-3191-6
7. Kovtonyuk, D. A. & Ryazanov, V. I. (2008). On the theory of lower Q homeomorphisms. Ukr. mat. vestnik, 5, No. 2, pp. 159184 (in Russian).
8. Kovtonyuk, D. A., Petkov, I. V., Ryazanov, V. I. & Salimov, R. R. (2013). Boundary behavior and the Dirichlet problem for the Beltrami equations. Algebra i analiz, 25, No. 4, pp. 101124 (in Russian). doi: https://doi.org/10.1090/S1061-0022-2014-01308-8
9. Kovtonyuk, D. A., Ryazanov, V. I., Salimov, R. R. & Sevostyanov, E. A. (2013). On the theory of OrlichSobolev classes. Algebra i analiz, 25, No. 6, pp. 50102 (in Russian). doi: https://doi.org/10.1090/S1061-0022-2014-01324-6
10. Kovtonyuk, D. A., Salimov, R. R. & Sevostyanov, E. A. (2013). On the theory of mappings of classes Sobolev and OrlichSobolev. Kyiv: Naukova Dumka (in Russian).
11. Tengvall, V. (2014). Differentiability in the Sobolev space 1, n 1 W − . Calc. Var. Part. Differ. Equat., 51, No. 12, pp. 381399. doi: https://doi.org/10.1007/s00526-013-0679-4
12. Csörnyei, M., Hencl, S. & Maly, J. (2010). Homeomorphisms in the Sobolev space 1, n 1 W − . J. Reine Angew. Math., No. 644, pp. 221235. doi: https://doi.org/10.1515/crelle.2010.057
13. Ponomarev, S. P. (1987). On N properties of classes 1 Wp homeomorphisms. Sib. matem. zhurn., 28, No. 2, pp. 140148 (in Russian). doi: https://doi.org/10.1007/BF00970876
14. Mazya, V. G. (1985). Spaces S.L. Sobolev. Leningrad: Izdvo Leningr. unta (in Russian).
15. Kuratovskij, Ê. (1966). Òopology. Vol. 1. Ìoscow: Ìir (in Russian).