The comparative characteristic of monolayer and three-dimensional cultivations of the continuous cell line of fibroblasts L 929

Moisieiev, AI
Bozhok, GA
1Gorina, OL
1Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
Dopov. Nac. akad. nauk Ukr. 2019, 8:93-101
Section: Biology
Language: Ukrainian

The comparative study of the functional and metabolic potentials of fibroblasts of cell line L 929 under conditions of the monolayer (2D) and threedimensional cultivations is performed. It is found that the method of cultivation of fibroblasts affects their viability and proliferative potential. In particular, it is shown that, after the volumetric cultivation of fibroblasts during 7 days, the number of viable cells and their proliferative potential significantly (p < 0.05) exceed similar indicators after the monolayer cultivation.

According to data of the gel permeation chromatography, we established significant differences (p < 0.05) in the quantitative and qualitative compositions of proteinpeptide substances in cell culture media in 2D and 3D formats. Special attention is attracted by the results on the difference in the amounts of peptides in the range of molecular masses (705—1607 Da) in the medium of volumetric cultivation, which may be due to the active synthesis of growth factors. The results obtained indicate that the volumetric cultivation has a significant impact on the synthetic and morphofunctional indicators of fibroblasts of the cell line L 929 in comparison with the 2D format.

Keywords: fibroblasts, monolayer and volumetric cultivations, proliferative potential, proteinpeptide substances

1. Kozina, K. V., Saburina, I. N., Gorkun, A. A., Zurina, I. N., Kosheleva, N. V., Volkova, E. N. & Morozov, S. G. (2015). Comparative study of p199 effect on 2D and 3D cultures of human dermal fibroblasts. Pathogenesis, No. 4, pp. 3440 (in Russian).
2. Kosheleva, N. V., Il’ina, I. V., Kozhina, K. V., Zurina, I. V., Roskova, A. E., Gorkun, A. A., Ovchinnikov, A. V., Agranat, M. B., Morozov, S. G. & Saburina, I. N. (2017). Cellular model based on laser microsurgery ofcells spheroids to study the repair process. Ontogenez, 48, No. 1, pp. 6372 (in Russian). doi:
3. Plaksina, K. M., Sidorenko, O. S., Legach, Y. I., Kovalenko, I. F. & Bozhok, G. A. (2017). Expression of bIIItubulin in the neonatal adrenal cell culture: comparison of monolayer and 3Dculture. The Journal of V.N. Karazin Kharkiv National University, Ser. Biology, Iss. 28, pp. 7686 (in Ukrainian).
4. Bozhok, G. A., Moisieiev, A. I., Gorina, O. L. & Moisieieva, N. N. (2018, April). The effect of sowing concentration of fibroblasts on the morphofunctional properties of 3D culture. Proceedings of the International Research and Practical Conference The development of medical sciences: problems and solutions. (pp. 135138), Brno.
5. Armitage, W. J. & Mazur, P. (1984). Osmotic tolerance of human granulocytes. Am. J. Physiol., 247, No. 5, pp. 373381. doi:
6. Denker, S. P. & Barber, D. L. (2002). Cell migration requires both ion translocation and cytoskeletal anchoring by the NaH exchanger NHE1. J. Cell Biol., 159, No. 6, pp. 10871096. doi:
7. Belous, À. Ì., Mokhamed, À. N., Semenchenko, A. Yu. & Yavorskaya, V. A. (1997). Research of level of peptides of “middle molecules” in plasma of blood of patients with the different forms of violations of cerebral circulation of blood. Dopov. Nac. akad. nauk Ukr., No. 8, pp. 177181 (in Russian).
8. Cheng, N. C., Wang, N. C., Cheng, S. & Young, T. H. (2012). The influence of spheroid formation of human adiposederived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 33, Iss. 6, pp. 17481758. doi:
9. Sato, R., Yasukawa, T., Kacza, J., Eichler, W., Nishiwaki A., Iandiev, I., Ohbayashi, M., Kato, A., Yafai, Y., Bringmann, A., Takase, A., Ogura, Y., Seeger, J. & Wiedemann, P. (2013). Threedimensional spheroidal culture visualization of membranogenesis of Bruch’s membrane and basolateral functions of the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci., 54, No. 3, pp. 17401749. doi:
10. Kubatiev, A. A., Zurina, I. M., Kosheleva, N. V., Gorkun, A. A., Saburina, I. N. & Repin, V. S. (2015). From 2D cell phenotypes to 3D live highcontent imaging: new ways to windows. J. Cytol. Histol., 6, No. 6.
11. Antoni, D., Burckel, H., Josset, E. & Noel, G. (2015). Threedimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci., 16, No. 3, pp. 5517–5527. doi:
12. Sangmyung, R. (2009). Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Exp. Mol., Med, 41, No. 12, pp. 858865. doi:
13. Eleanor, K. & Przyborski, S. (2015). Advances in 3D cell culture technologies enabling tissuelike structures to be created in vitro. J. Anat., 227, No. 6, pp. 746756. doi: