Title | Peculiarities of the radiation-induced bystander effect manifestation in human peripheral blood lymphocytes due to action of astaxantine |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Rushkovsky, SR, Kurinnyi, DA, Demchenko, OM, Pilinska, MA |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2019.09.082 |
Issue | 9 |
Section | Biochemistry |
Pagination | 82-87 |
Date Published | 09/2019 |
Language | Ukrainian |
Abstract | Using the method of Comet assay under neutral conditions, the effect of astaxanthin on the manifestation of the bystander effect is studied. Intact human lymphocytes were cocultivated with lymphocytes γ-irradiated in vitro in a dose 0.5 Gy. A considerable decrease in the DNA exit in cultures of bystander cells compared with the control cultures is shown. This phenomenon can be explained by the existence, in the culture of bystander lymphocyte, a significant number of damaged cells, in which the checkpoint on the S phase of the cell cycle is activated. Аstaxanthin had an influence on the realization of the bystander effect by reducing the number of cells, which obviously stopped their division in the S phase of the cell cycle, and increasing the frequency of cells with high level of DNA fragmentation as well. |
Keywords | astaxanthine, bystander effect, Comet assay, human peripheral blood lymphocytes, γ-irradiation |
1. Buonanno, M., de Toledo, S. M., Pain, D. & Azzama, E. I. (2011). Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat Res., 175, No. 4, pp. 405-415. doi: https://doi.org/10.1667/RR2461.1
2. Shemetun, O. V. & Pilinska, M. A. (2007). Radiation-induced bystander effect. Cytol. Genet., 41, No. 4, pp. 66-71. doi: https://doi.org/10.3103/S0095452707040111
3. Ambati, R. R., Phang, S. M., Ravi, S. & Aswathanarayana, R. G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications. Mar. Drugs., 12, No. 1, pp. 128-152. doi: https://doi.org/10.3390/md12010128
4. Tago, Y., Fujii ,T., Wada, J., Kato, M., Wei, M., Wanibuchi, H. & Kitano, M. (2014). Genotoxicity and subacute toxicity studies of a new astaxanthin-containing Phaffia rhodozyma extract. J. Toxicol. Sci., 9, No. 3, pp. 373-382. doi: https://doi.org/10.2131/jts.39.373
5. Rushkovsky, S. R., Кurinnyi, D. А., Demchenko, O. M. & Pilinska, M. А. (2018). Radioprotective properties of astaxanthin: The impact on radiation induced chromosomal aberrations and DNA breaks in human lymphocytes in vitro. In Reeve, T. (Ed.). Ionizing radiation. Advances in research and applications (pp. 221-240). New York: Nova science publishers.
6. Kurinnyi, D. А., Rushkovsky, S. R., Demchenko, O. M., Dibska, O. B. & Pilinska, M. А. (2018). Comparison of the modifying effect of astaxanthin on the development of radiation-induced chromosomal instability in human lymphocytes exposed in vitro at different stages of the cell cycle. Cytol. Genet., 52, No. 5, pp. 368-373. doi: https://doi.org/10.3103/S0095452718050055
7. Afanasieva, K., Zazhytska, M. & Sivolob, A. (2010). Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis, 31, pp. 512-519. doi: https://doi.org/10.1002/elps.200900421
8. Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D. & Clement, M. (2014). OpenComet: An automated tool for comet assay image analysis. Redox Biol., 2, pp. 457-465. doi: https://doi.org/10.1016/j.redox.2013.12.020
9. Rosner, B. (2015). Fundamentals of Biostatistics. 8th ed. Cengage Learning. 962 pp.
10. Olive, P. L. & Durand, R. E. (2005). Heterogeneity in DNA damage using the comet assay. Cytometry, 66, pp. 1-8. doi: https://doi.org/10.1002/cyto.a.20154
11. Burhans, W. C. & Weinberger, M. (2007). DNA replication stress, genome instability and aging. Nucleic Acids Res., 35 No. 22, pp. 7545-7556. doi: https://doi.org/10.1093/nar/gkm1059
12. Кurinnyi, D. А., Demchenko, O. M., Romanenko, M. G. & Rushkovsky, S. R. (2018). The impact of astaxanthin on the level of DNA methylation in irradiated in vitro human lymphocytes. Probl. Radiat. Med. Radiobiol., 23, pp. 235-245. doi: https://doi.org/10.33145/2304-8336-2018-23-235-245
13. Afanasieva, K. S., Chopei, M. I., Lozovik, A. V., Rushkovsky, S. R. & Sivolob, A. V. (2016). Redistribution of DNA loop domains in human lymphocytes under blast transformation with interleukin 2. Ukr. Biochem. J., 88, No. 6, pp. 45-51. doi: https://doi.org/10.15407/ubj88.06.045