Polymeric proton exchange media with ionic bonds in the main chain of the polymer

Gumenna, MA
1Klimenko, NS
1Stryutsky, AV
Kovalenko, LL
2Kravchenko, VV
Shevchuk, AV
1Shevchenko, VV
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
2L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 12:60-66
Section: Chemistry
Language: Ukrainian

This paper proposes a method of obtaining the first representative of a polymeric proton-conducting medium with protic ionic groups in the main chain of a polymer by the mutual neutralization of linear telechelic oligomers with end groups of the basic and acidic nature. Oligoethylene oxide containing 1-(3-aminopropyl) imidazole fragments with two types of basic centers (aliphatic secondary amine groups and imidazole fragments) at the ends of the chain was used as the oligomer with basic properties. Sulfonic acid-terminated oligoethylene oxide was used as the acid oligomer. Protonation of aliphatic secondary amino groups in the composition of the oligomer of the basic type with the formation of an ion-elongated polymer chain is more probable at the equimolar ratio of the starting compounds according to the analysis of ΔKa values. It is shown that the synthesized polymer contains two types of crystalline formations with melting points of 37.6 °C and 46.2 °C and turns into a liquid state, when heated to higher temperature values. The proton conductivity of the polymer under anhydrous conditions is close to the conductivity of the initial sulfonic acid-terminated oligomer in the temperature inter val of 40-100 °C and reaches 2.3 · 10–4 S/cm at 100 °C, despite a much lower content of proton charge carriers.

Keywords: acid—base neutralization, ionic polymers, proton conductivity, proton exchange media

1. Shaplov, A. S., Marcilla, R. & Mecerreyes, D. (2015). Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim. Acta., 175, рр. 18-34. https://doi.org/10.1016/j.electacta.2015.03.038
2. Qian, W., Texter, J. & Yan, F. (2017). Frontiers in poly(ionic liquid)s: syntheses and applications. Chem. Soc. Rev., 46, рр. 1124-1159. https://doi.org/10.1039/C6CS00620E
3. Shevchenko, V. V., Stryutskii, A. V. & Klimenko, N. S. (2011). Polymeric organic-inorganic proton-exchange membranes for fuel cells produced by the sol-gel method. Theor. Exp. Chem., 47, No. 2, pp. 67-91. https://doi.org/10.1007/s11237-011-9187-9
4. Díaz, M., Ortiz, A. & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membrane Sci., 469, pp. 379-396. https://doi.org/10.1016/j.memsci.2014.06.033
5. Amarasekara, A. S. (2016). Acidic ionic liquids. Chem. Rev., 116, pp. 6133-6183. https://doi.org/10.1021/acs.chemrev.5b00763
6. Ricks-Laskoski, H. L. & Snow, A. W. (2006). Synthesis and electric field actuation of an ionic liquid polymer. J. Am. Chem. Soc., 128, pp. 12402-12403. https://doi.org/10.1021/ja064264i
7. Ke, Y., Zhang, W., Suo, X., Ren, Q., Xing, H. & Yuan, J. (2020). β-Cyclodextrin-derived room temperature macromolecular ionic liquids by PEGylated anions. Macromol. Rapid Commun., 41, No. 8, e1900576. https://doi.org/10.1002/marc.201900576
8. Shevchenko, V. V., Gumennaya, M. A., Stryutsky, A. V., Klimenko, N. S., Trachevskii, V. V., Klepko, V. V. & Davidenko, V. V. (2018). Reactive oligomeric protic cationic linear ionic liquids with different types of nitrogen centers. Polym. Sci., Ser. B, 60, No. 5, pp. 598-611. https://doi.org/10.1134/S1560090418050160
9. Shevchenko, V. V., Stryutsky, A. V., Klymenko, N. S., Gumenna, M. A., Fomenko, A. A., Bliznyuk, V. N., Trachevsky, V. V., Davydenko, V. V. & Tsukruk, V. V. (2014). Protic and aprotic anionic oligomeric ionic liquids. Polymer, 55, No. 16, pp. 3349-3359. https://doi.org/10.1016/j.polymer.2014.04.020
10. Shumskii, V. F., Shevchenko, V. V., Gumennaya, M. A., Getmanchuk, I. P., Stryutskii, A. V., Klimenko, N. S., Davidenko, V. V., Ignatova, T. D., Syrovets, A. P. & Vorontsova, L. A. (2019). Specific features of the rheo lo gical behavior of a protic oligomeric ionic liquid of cationic type with basic sites of two types in the region of the solid—liquid transition. Colloid J., 81, No. 6, pp. 804-816. https://doi.org/10.1134/S1061933X19050132
11. Shevchenko, V. V., Stryutsky, A. V., Klymenko, N. S., Gumennaya, M. A., Fomenko, A. A., Trachevsky, V. V., Davydenko, V. V., Bliznyuk, V. N. & Dorokhin, A. V. (2014). Protic сationic oligomeric ionic liquids of the urethane type. Polym. Sci., Ser. B, 56, No. 5, pp. 583-592. https://doi.org/10.1134/S156009041405011X
12. Chopade, S. A., So, S., Hillmyer, M. A. & Lodge, T. P. (2016). Anhydrous proton conducting polymer electrolyte membranes via polymerization-induced microphase separation. ACS Appl. Mater. Inter., 8, No. 9, pp. 6200-6210. https://doi.org/10.1021/acsami.5b12366
13. Kadar, E. P., Wujcik, C. E., Wolford, D. P. & Kavetskaia, O. (2008). Rapid determination of the applicability of hydrophilic interaction chromatography utilizing ACD Labs Log D Suite: A bioanalytical application. J. Chromatogr. B, 863, No. 1, pp. 1-8. https://doi.org/10.1016/j.jchromb.2007.11.036
14. Greaves, T. L. & Drummond, C. J. (2008). Protic ionic liquids: properties and applications. Chem. Rev., 108, No. 1, pp. 206-237. https://doi.org/10.1021/cr068040u
15. Kyritsis, A., Pissis, P. & Grammatikakis, J. (1995). Dielectric relaxation spectroscopy in poly(hydroxyethy acrylate)/water hydrogels. J. Polym. Sci. B. Polym. Phys., 33, No. 12, pp. 1737-1750. https://doi.org/10.1002/polb.1995.090331205