On the nonperiodic groups, whose subgroups of infinite special rank are transitively normal

1Kurdachenko, LA
2Subbotin, IYa.
Velychko, TV
1Oles Honchar Dnipropetrovsk National University
2National University, Los Angeles, USA
Dopov. Nac. akad. nauk Ukr. 2020, 2:3-6
https://doi.org/10.15407/dopovidi2020.02.003
Section: Mathematics
Language: English
Abstract: 

This paper devoted to the nonperiodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group G includes an ascendant locally nilpotent subgroup of infinite special rank, then G is Abelian.

Keywords: finite special rank, locally nilpotent radical, locally nilpotent residual, periodic group, soluble group, transitively normal subgroups
References: 

1. Kurdachenko, L. A. & Subbotin, I. Ya. (2006). Transitivity of normality and pronormal subgroups. In Combinatorial group theory, discrete groups, and number theory. Contemporary Mathematics, Vol. 421 (pp. 201212). Providence, RI: Amer. Math. Soc. Doi: https://doi.org/10.1090/conm/421/08038
2. Maltsev, A. I. (1948). On groups of finite rank. Mat. Sbornik 22, pp. 351352 (in Russian).
3. Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2007). On various rank conditions in infinite groups. Algebra Discrete Math., No. 4, pp. 2343.
4. Dixon, M. R. (2008). Certain rank conditions on groups. Noti di Matematica, 2, pp. 151175.
5. Dixon, M. R., Kurdachenko, L. A., Pypka, A. A. & Subbotin, I. Ya. (2016). Groups satisfying certain rank conditions. Algebra Discrete Math., 22, No. 2, pp. 184200.
6. Dixon, M. R., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). Rank of groups: the tools, characteristic and restrictions. Wiley.
7. Dixon, M. R., Evans, M. J. & Smith, H. (1997). Locally (solublebyfinite) groups with all proper insoluble subgroups of finite rank. Arch. Math. (Basel), 68, pp. 100109. Doi: https://doi.org/10.1007/s000130050037
8. Semko, N. N. & Velychko, T. V. (2017). On the groups whose subgroups of infinite special rank are transitively normal. Algebra Discrete Math., 24, No. 1, pp. 3445. Doi: https://doi.org/10.15407/dopovidi2017.08.017
9. Ba, M. S. & Borevich, Z. I. (1988). On arrangement of intermediate subgroups. In: Rings and linear groups (pp. 1441). Krasnodar: Kubanskij Univ. (in Russian).
10. Müller, K. H. (1966). Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen. Rend. Semin. Mat. Univ. Padova, No. 1, 36, pp. 129157.