Reproductive advantage of parthenogenetic earthworm Aporrectodea trapezoides over the parental amphymictic species A. caliginosa (Oligochaeta, Lumbricidae)

1Mezhzherin, SV
Chaika, YY
Zhalay, EI
1I. I. Schmalhausen Institute of Zoology of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 2:76-81
https://doi.org/10.15407/dopovidi2020.02.076
Section: Biology
Language: Russian
Abstract: 

A comparative study of the individual fecundity of parthenogenetic A. trapezoides and amphimictic A. caliginosa earthworms is carried out under laboratory conditions. It has been established that the apomictic species has a higher reproductive potential than the amphimictic one. This is manifested both in the greater number of cocoons produced and in the number of surviving juvenile individuals. Obviously, despite the absence of meiosis, the efficiency of ovogenesis in triploid A. trapezoides is higher than in diploid A. caliginosa. Ultimately, this proves that meiosis is not always the most effective way to produce gametes in animals, and amphimixis is the most effective form of reproduction. The high reproductive potential of parthenogenetic worms, combined with the all-female structure of the populations and the ecological plasticity obviously provide them with a wide distribution, even in places and regions that are not very favorable historically.

Keywords: Aporrectodea, earthworms, fertility, parthenogenesis
References: 

1. Schön, I., Martens, K. & Gijk, P. (Eds.). (2009). Lost sex. The evolutionary biology of parthenogenesis. Dordrecht: Springer. Doi: https://doi.org/10.1007/978-90-481-2770-2
2. Grebelnyi, S. (2008). Cloning in nature. A part playing by gene recombination stoppage in fauna and flora formation. Saint-Petersburg (in Russian).
3. Cuellar, O. (1977). Animal parthenogenesis. Science, 197, No. 4306, рр. 837-843. Doi: https://doi.org/10.1126/science.887925
4. Glesener, R. R. & Tilman, D. (1978). Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Amer. Nat., 112, No. 986, рр. 1867-2015. Doi: https://doi.org/10.1086/283308
5. Mezhzherin, S. V., Garbar, A. V., Vlasenko, R. P., Оnishchuk, I. P., Коtsyuba, I. Y. & Zhalay, E. I. (2018). Evolutionary paradox of parthenogenetic earthworms. Kiev: Naukova Dumka (in Russian).
6. Mezhzherin, S. V., Vlasenko, R. P. & Garbar, A. V. (2008). Features of the genetic structure of the earthworms Aporrectodea (superspecies) caliginosa (Oligochaeta: Lumbricidae) complex in Ukraine. Tsitol. Genet., 42,
No. 4, pp. 50-57 (in Russian). Doi: https://doi.org/10.3103/S0095452708040075
7. Kokodiy, S. V. (2016). Breeding potential of adventitious species of Carassius auratus and Carassius gibelio (Cypriniformes, Cyprinidae) in water bodies of Ukraine. Vestnik zoologii, 50, No. 5, pp. 423-428. Doi: https://doi.org/10.1515/vzoo-2016-0049
8. Mezhzherin, S. V., Saliy, T. V. & Tsyba, A. A. (2017). Reproductive potentials of diplod and polyploid representatives of the genus Cobitis (Cypriniformes, Cobitidae). Vestnik zoologii, 51, No. 1, pp. 37-44. Doi: https://doi.org/10.1515/vzoo-2017-0006
9. Gregory, T. R. (2012). Animal genome size database (electronic version). Retrieved from http://www.genomesize.com
10. Hendrix, P. F., Callaham, Mac A., Drake, J. M., Huang, C.-Y., James, S. W., Snyder, B. A. & Zhang, W. (2008). Pandora’s box contained bait: the global hroblem of introduced earthworms. Ann. Rev. Ecol. Evol. Syst., 39, pp. 593-613. Doi: https://doi.org/10.1146/annurev.ecolsys.39.110707.173426