Stress temperature and soil drought effects on amino acid composition in winter wheat

TitleStress temperature and soil drought effects on amino acid composition in winter wheat
Publication TypeJournal Article
Year of Publication2020
AuthorsBabenko, LM, Romanenko, KO, Kosakivska, IV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2020.02.087
Issue2
SectionEcology
Pagination87-92
Date Published2/2020
LanguageEnglish
Abstract

The effect of short-term high (40 °C, 2 h) and positive low (4 °C, 2 h) temperatures, as well as simulated moderate soil drought, on the total free amino acid and proline contents is studied under controlled conditions on organs of 14-day-old Triticum aestivum L. plants, the cultivar Podolyanka. The contents of free amino acids and proline are found to be higher in shoots of control plants and are, respectively, 18.29 mg/g and 0.85 mg/g of dry weight. Under simulated moderate soil drought conditions, the free amino acids and proline contents increase in shoots by 17 % and 71 %, respectively, while in the roots by 50 % and 61 %. During a short-term hyperthermia, the increases in free amino acid and proline content in shoots by 12 and 47 %, respectively, and in roots by 30 % and 23 %, respectively, are also observed. The response to a short-term hyperthermia was less pronounced. The involvement of free amino acids and proline in developing the resistance to abiotic stressors in winter wheat is discussed.

Keywordsfree amino acids, proline, soil drought, temperature stress, Triticum aestivum
References: 

1. Ummenhofer, C. C. & Meehl, G. A. (2017). Extreme weather and climate events with ecological relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, pp. 1-12. Doi: https://doi.org/10.1098/rstb.2016.0135
2. Kosakivska, I. V. (2007). Ecological direction in plant physiology: Achievements and prospects. Fiziologia i biokhimia cult. rastenij, 39, No. 4, pp. 279-290 (in Ukrainian).
3. Morgun, V. V. & Kiriziy, D. A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increased productivity. Fiziologia i biokhimia cult. rastenij, 44, No. 6, pp. 463-483 (in Ukrainian).
4. Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K, Sidhu, G. P. S., Bali, A. S, Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9, No. 7, 285, pp. 1-36. Doi: https://doi.org/10.3390/biom9070285
5. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signal. Behav., 7, No. 11, pp. 1456-1466. Doi: https://doi.org/10.4161/psb.21949
6. Colton-Gagnon, K., Ali-Benali, M. A., Mayer, B. F., Dionne, R., Bertrand, A. Do Carmo, S. & Charron, J. B. (2014). Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Ann. Bot., 113, No. 4. pp. 681-693. Doi: https://doi.org/10.1093/aob/mct283
7. Szabados, L. & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci., 15, pp. 89-97. Doi: https://doi.org/10.1016/j.tplants.2009.11.009
8. de Carvalho, K., de Campos, M.K., Domingues, D.S., Pereira, L.F. & Vieira, L.G. (2013). The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep., 40, pp. 3269-3279. Doi: https://doi.org/10.1007/s11033-012-2402-5
9. Morgan, J. M. (2000). Increases in grain yield of wheat by breeding for an osmoregulation gene: Relationship to water supply and evaporative demand. Aust. J. Agric. Res., 51, No. 8, pp. 971-978. Doi: https://doi.org/10.1071/AR00062
10. Liu, W., Yu, K., He, T., Li, F., Zhang, D. & Liu, J. (2013). The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci. World J., 6, ID 658793, pp. 1-7. Doi: https://doi.org/10.1155/2013/658793
11. Luo, Y., Tang, H. & Zhang, Y. (2011). Production of reactive oxygen species and antioxidant metabolism about strawberry leaves to low temperatures. J. Agric. Sci., 3, pp. 89-95. Doi: https://doi.org/10.5539/jas.v3n2p89
12. Komisarenko, A. G., Mykhalska, S. I., Kurchii, V. M., Sytnyk, S. K., Sergeeva, L. E. & Tishchenko, O. M. (2015). Physiological-biochemical characteristic of transgenic sunflower plants with dsRNA suppressor of proline dehydrogenase gene. Fiziol. rast. genet., 47, No. 2, pp. 160-166 (in Russian).
13. Posmyk, M. M. & Janas, K. M. (2007). Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol. Plant., 29, pp. 509-517. Doi: https://doi.org/10.1007/s11738-007-0061-2
14. Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P. & Nayyar, H. (2011). Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol. Mol. Biol. Plants., 17, pp. 203-213. Doi: https://doi.org/10.1007/s12298-011-0078-2
15. Kosakivska, I. V., Vasyuk, V. A. & Voytenko, L. V. (2018). Drought stress effects on growth characteristics of two relative weats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 50, No. 3, pp. 241-252 (in Ukrainian). Doi: https://doi.org/10.15407/frg2018.03.241