Bioclimatic modeling of the European distribution of the invasive Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse, 1895), with special reference to Ukraine

Kozynenko, II
Tytar, VM
Dopov. Nac. akad. nauk Ukr. 2020, 3:88-93
https://doi.org/10.15407/dopovidi2020.03.088
Section: Biology
Language: English
Abstract: 

Due to the spread of Aedes albopictus to many countries around the globe, which is an important mosquito vector for the transmission of many viral pathogens and capable of hosting the Zika virus, it is important to determine the potential suitable bioclimatic range in Ukraine. Bioclimatic modelling suggests that, under current climate conditions, the vector species has varying chances in the near term to invade a number of regions in Ukraine, especially in the south and west of the country: particularly, Crimea, the southern portion of the Odesa region, and Transcarpathian one and, to a less extent, the Precarpathian region. Under the risk of invasion by the mosquito vector, are as well coastal areas of the Black and Azov seas.

Keywords: Aedes albopictus, bioclimatic modeling, Ukraine
References: 

1. Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. (2007). Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis., 7, No. 1, pp. 76-85. Doi: https://doi.org/10.1089/vbz.2006.0562
2. Hochedez, P., Jaureguiberry, S., Debruyne, M., Bossi, P., Hausfater, P., Brucker, G., Bricaire, F. & Caumes, E. (2006). Chikungunya infection in travelers. Emerg. Infect. Dis., 12, No. 10, pp. 1565-1567. Doi: https://doi.org/10.3201/eid1210.060495
3. Grard, G., Caron, M., Mombo, I. M., Nkoghe, D., Ondo, S. M., Jiolle, D., Fontenille, D., Paupy, C., Leroy, E. M. (2014). Zika Virus in Gabon (Central Africa) — 2007: A new threat from Aedes albopictus? PLOS Negl. Trop. Dis., 8, No. 2, e2681. Doi: https://doi.org/10.1371/journal.pntd.0002681
4. Reinhold, J. M., Lazzari, C. R. & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects, 9, No. 4, E158. Doi: https://doi.org/10.3390/insects9040158
5. Akiner, M. M., Demirci, B., Babuadze, G., Robert, V. & Schaffner, F. (2016). Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea Region increases risk of Chikungunya, Dengue, and Zika outbreaks in Europe. PLoS Negl. Trop. Dis., 10, No. 4, e0004664. Doi: https://doi.org/10.1371/journal.pntd.0004664
6. Kutateladze, T., Zangaladze, E., Dolidze, N., Mamatsashvili, T., Tskhvaradze, L., Andrews, E. S. & Haddow, A. D. (2016). First record of Aedes albopictus in Georgia and updated checklist of reported species. J. Am. Mosq. Control. Assoc., 32, No. 3, pp. 230-233. Doi: https://doi.org/10.2987/16-6574.1
7. Fedorova, M. V., Shvets, O. G., Yunicheva, Y. V., Medyanik, I. M., Ryabova, T. E. & Otstavnova, A. D. (2018). Dissemination of invasive mosquito species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the south of Krasnodar Region, Russia. Problems of Particularly Dangerous Infections, 2, pp. 101-105. Doi: https://doi.org/10.21055/0370-1069-2018-2-101-105 (in Russian).
8. Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A., Shearer, F. M., Brady, O. J., Messina, J. P., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Wint, G. R., Elyazar, I. R., Teng, H. J. & Hay, S. I. (2015). The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data, 2, 150035. Doi: https://doi.org/10.1038/sdata.2015.35
9. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, No. 5, pp. 541-545. Doi: https://doi.org/10.1111/ecog.01132
10. Naimi, B. & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, No. 4, pp. 368-375. Doi: https://doi.org/10.1111/ecog.01881
11. Title, P. O. & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, No. 2, pp. 291-307. Doi: https://doi.org/10.1111/ecog.02880
12. Caminade, C., Medlock, J. M., Ducheyne, E., McIntyre, K. M., Leach, S., Baylis, M. & Morse A. P. (2012). Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface, 9, Iss. 75, pp. 2708-2717. Doi: https://doi.org/10.1098/rsif.2012.0138
13. Alto, B. W. & Juliano S. A. (2001). Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol., 38, No. 4, pp. 548-556. Doi: https://doi.org/10.1603/0022-2585-38.4.548
14. O’Brien, E. M. (2006). Biological relativity to water-energy dynamics. J. Biogeogr., 33, Iss. 11, pp. 1868-1888. Doi: https://doi.org/10.1111/j.1365-2699.2006.01534.x
15. Dieng, H., Saifur, R. G., Hassan, A. A., Salmah, M. R., Boots, M., Satho, T., Jaal, Z. & AbuBakar, S. (2010). Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PloS One, 5, No. 7, e11790. Doi: https://doi.org/10.1371/journal.pone.0011790