Bioactivity prediction and synthesis of new 3-substituted 5-thiazolylmethylene rhodanines

1Kobzar, OL
2Hodyna, DM
Sinenko, VO
1Kovalishyn, VV
Trokhimenko, OP
Slivchuk, SR
Muzychka, OV
1Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
2Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 5:70-77
https://doi.org/10.15407/dopovidi2020.05.070
Section: Chemistry
Language: Ukrainian
Abstract: 

The virtual screening of a database of Z- and E-isomeric thiazole-containing derivatives of N-methyl-, N-ben zyland N-phenylethyl-substuted rhodanines is performed by regression and classification QSAR models for predicting the antiblastic activity of compounds against Hep-2 cells. The molecular docking method is used to evaluate the affinity of 3-substituted 5-thiazolylmethylene rhodanines to the ATP-binding site of potential target protein, the protein kinase Pim-1. According to the virtual screening results, ten compounds from the database were selected and synthesized by the reaction of N-substituted rhodanines with thiazol-2-carboxaldehydes, thiazol-4-carboxaldehydes and thiazol-5-carboxaldehydes. In vitro study of the compounds with N-substituted rhodanine scaffold showed the cytotoxic activity on the cell culture of human laryngeal adenocarcinoma Hep-2 which was 2.7-10 times lower in comparison with the effect of cisplatin as a reference. The results indicated that the rhodanine derivative with thiazol-2-yl and N-(4-methoxyphenyl)ethyl substituents, as well as rhodanine compound bearing thiazol-4-yl and N-4-methylbenzyl groups, exhibited the most pronounced effects. The toxicity of these compounds evaluated on hydrobiont D. magna was two orders of magnitude lower than that of cisplatin.

Keywords: antiblastic activity, molecular docking, QSAR-analysis, rhodanines, synthesis, thiazoles
References: 

1. Kaminskyy, D., Kryshchyshyn, A. & Lesyk, R. (2017). Recent developments with rhodanine as a scaffold of drug discovery. Expert Opin. Drug Discov., 12, No. 12, pp. 1233-1252. Doi: https://doi.org/10.1080/17460441.2017.1388370
2. Sawaguchi, Y., Yamazaki, R., Nishiyama, Y., Sasai, T., Mae, M., Abe, A., Yaegashi, T., Nishiyama, H. & Matsuzaki, T. (2017). Rational design of a potent pan-Pim kinases inhibitor with a rhodanine-benzoimidazole structure. Anticancer Res., 37, No. 8, pp. 4051-4057. Doi: https://doi.org/10.21873/anticanres.11790
3. Vatolin, S., Phillips, J. G., Jha, B. K., Govindgari, S., Hu J., Grabowski, D., Parker, Y., Lindner, D. J., Zhong, F., Distelhorst, C. W., Smith, M. R., Cotta, C., Xu, Y., Chilakala, S., Kuang, R. R., Tall, S. & Reu, F. J. (2016). Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer. Res., 76, No. 11, pp. 3340-3350. Doi: https://doi.org/10.1158/0008-5472.CAN-15-3099
4. Li, P., Zhang, W., Jiang, H., Li, Y., Dong, C., Chen, H., Zhang, K. & Du, Z. (2018). Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MedChem- Comm., 9, pp. 1194-1205. Doi: https://doi.org/10.1039/C8MD00278A
5. Bayindir, S., Caglayan, C., Karaman, M. & Gülcin, İ. (2019). The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzyme. Bioorg. Chem., 90, 103096. Doi: https://doi.org/10.1016/j.bioorg.2019.103096
6. Bernardo, P.H., Sivaraman, T., Wan, K.-F., Xu, J., Krishnamoorthy, J., Song, C.M., Tian, L., Chin, J.S.F., Lim, D.S.W., Mok, H.Y.K., Yu, V.C., Tong, J.C. & Chai, C.L.L. (2011). Synthesis of a rhodanine-based compound library targeting Bcl-XL and Mcl-1. Pure Appl. Chem., 83, No. 3, pp. 723-731. Doi: https://doi.org/10.1351/PAC-CON-10-10-29
7. Ozen, C., Unlusoy, M. C., Aliary, N., Ozturk, M. & Dundar, O. B. (2017). Thiazolidinedione or rhodamine: a study on synthesis and anticancer activity comparison of novel thiazole derivatives. J. Pharm. Pharm. Sci., 20, No. 1, pp. 415-427. Doi: https://doi.org/10.18433/J38P9R
8. Xia, Z., Knaak, C., Ma, J., Beharry, Z. M., Mclnnes, C., Wang, W., Kraft, A. S. & Smith, C. D. (2009). Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J. Med. Chem., 52, No. 1, pp. 74-86. Doi: https://doi.org/10.1021/jm800937p
9. Zhang, X., Song, M., Kundu, J. K., Lee, M.-H. & Liu, Z.-Z. (2018). PIM kinase as an executional target in cancer. J. Cancer Prev., 23, No. 3, pp. 109-116. Doi: https://doi.org/10.15430/JCP.2018.23.3.109
10. Choi, J. L., Cho, S. I., Do, N. Y., Kang, C. Y. & Lim, S. C. (2010). Clinical significance of the expression of galectin-3 and Pim-1 in laryngeal squamous cell carcinoma. J. Otolaryngol. Head Neck Surg., 39, No. 1, pp. 28-34.
11. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19, No. 14, pp. 1639-1662. Doi: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
12. Pogacic, V., Bullock, A. N., Fedorov, O., Filippakopoulos, P., Gasser, C., Biondi, A., Meyer-Monard, S., Knapp, S. & Schwaller, J. (2007). Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res., 67, No. 14, pp. 6916-6924. Doi: https://doi.org/10.1158/0008-5472.CAN-07-0320
13. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res., 28, No. 1, pp. 235-242. Doi: https://doi.org/10.1093/nar/28.1.235
14. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 4, No. 1, 17. Doi: https://doi.org/10.1186/1758-2946-4-17
15. Sanner, M. F. (1999). Python: a programming language for software integration and development. J. Mol. Graph. Model., 17, pp. 57-61.