Azomethine derivatives of p-ami nobenzoic acid as antioxidants and xanthine oxidase inhibitors

1Kobzar, OL
Tatarchuk, AV
Kachaeva, MV
1Pilyo, SG
Sukhoveev, OV
Sukhoveev, VV
1Brovarets, VS
1Vovk, AI
1Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 6:74-82
https://doi.org/10.15407/dopovidi2020.06.074
Section: Chemistry
Language: Ukrainian
Abstract: 

Antioxidant properties of hydroxylated azomethine derivatives of p-aminobenzoic acid and their inhibitory effect on xanthine oxidase activity have been established. Analysis of inhibitory activities of a series of synthe sized azomethine compounds towards xanthine oxidase, as well as molecular docking study indicated that carboxylate and hydroxyl groups can be involved in mechanisms of the enzyme inhibition. The azomethine derivatives are shown to exhibit the mixed type of inhibition, and inhibitory activities of some of them are in the micromolar ranges. The effect of the most active 4-(((1E)-(2-hydroxy-5-nitrophenyl)methylene)amino)benzoic acid was comparable to that of the known inhibitor allopurinol. According to molecular docking results, the carboxylate group of the azomethine inhibitor can form hydrogen bonds with the amino acid residues of Arg880, Thr1010, and Glu1261 in the active site of xanthine oxidase, while the hydroxyl group is close to the residues of Glu802 and Asn768. In addition, aryl groups of the inhibitor molecule form contacts with Phe914, Phe1009, Leu648, Phe1013, and other amino acid residues. The antioxidant activity of the azomethines is evaluated in the model system by the detection of malonic dialdehyde with the thiobarbituric acid test. The ability of some compounds to neutralize hydroxyl radicals exceeded the effect of trolox as a reference antioxidant.

Keywords: antioxidant properties, azomethines, hydroxyl radicals, inhibition, molecular docking, xanthine oxidase
References: 

1. Pacher, P., Nivorozhkin, A. & Szabó, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 58, No. 1, pp. 87-114. https://doi.org/10.1124/pr.58.1.6
2. Voelker, R. (2019). Another warning for febuxostat. JAMA. 321, No. 13, pp. 1245. https://doi.org/10.1001/jama.2019.3043
3. Prakash, A. & Adhikari, D. (2011). Application of Schiff bases and their metal complexes-A review. Int. J. Chem. Tech. Res., 3, No. 4, pp. 1891-1896.
4. Paşa, S., Tuneğ, M. & Boğa, M. (2019). Biological surveying of diverse Schiff base compounds: antiproliferative, antiradical and enzyme inhibition activity. Pharm. Chem. J., 53, No. 4, pp. 302-311. https://doi.org/10.1007/s11094-019-01997-y
5. Ali, Z. Y., Mohamed, S. A. & Edrees, M. M. (2012). Biological screening for some newly synthesized pyrazolo[3, 4-d]pyrimidine derivatives. Nat.Sci., 10, No. 7, pp. 58-69.
6. Titinchia, S. J. J., Abbo, H. S. & Saeed, A. A. H. (2004). Synthesis, spectroscopic and molecular structures investigations of some carboxylated schiff bases. J. Mol. Struct., 705, No. 1-3, pp. 121-126. https://doi.org/10.1016/j.molstruc.2004.06.025
7. Aruoma, O. I. (1994). Deoxyribose assay for detecting hydroxyl radicals. Methods Enzymol., 233, pp. 57-66. https://doi.org/10.1016/S0076-6879(94)33008-5
8. Manchot, W. & Furlong, J. R. (1909). Über Isomerie bei Anilen (Schiffschen Basen). (2. Mitteilung). Chem. Ber., 42, No. 3030, pp. 4383-4389. https://doi.org/10.1002/cber.19090420429
9. Khan, M. I., Khan, A., Hussain, I., Khan, M. A., Gul, S., Iqbal, M., Rahman, I.-U. & Khuda, F. (2013). Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg. Chem. Commun., 35, pp. 104-109. https://doi.org/10.1016/j.inoche.2013.06.014
10. Exner, O. & Lakomý, J. (1970). Studies on the inductive effect. VII. Inductive and mesomeric effects of nitrogen and oxygen substituents. Collect. Czech. Chem. Commun., 35, pp. 1371-1386. https://doi.org/10.1135/cccc19701371
11. Dikusar, A. E. (2012). Synthesis of (E)-2-methoxy-6-(R-imino)methylphenols and 2-methoxy-6-(R-amino) methylphenols. Rus. J. Gen. Chem., 82, No. 4, pp. 693-696. https://doi.org/10.1134/S1070363212040159
12. Cronenberger, L., Gaige, T., Pacheco, H. & Pillon, D. (1968). Nouvelles bases de Schiff dérivées des aldehydes dihalogéno-3,5 salicyliques et possédant des propriétés antifongiques et antibactériennes. Chim. Ther., 3, No. 2, pp. 87-99
13. Jiayi, S., Min, Z. & Changyan, S. (2019). A highly selective fluorescent chemosensor for Al(III) ions based on 2-hydroxy-1-naphthaldehyde derivative. Can. J. Chem., 97, No. 5, pp. 387-391. https://doi.org/10.1139/cjc-2018-0141
14. Brewster, C. M. & Millam, L. H. (1933). Phototropic and thermotropic anils from 5-bromosalicylaldehyde. J. Am. Chem. Soc., 55, No. 2, pp. 763-766. https://doi.org/10.1021/ja01329a049
15. Muzychka, O. V., Kobzar, O. L., Popova, A. V., Frasinyuk, M. S. & Vovk, A. I. (2017). Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase. Bioorg. Med. Chem., 25, No. 14, pp. 3606-3613. https://doi.org/10.1016/j.bmc.2017.04.048