Isothermal section of the Ti-Al- Ga system at 850 °С

Belyavina, NN
Nakonechna, ОІ
Kuryliuk, AN
1Makara, VA
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 6:30-36
https://doi.org/10.15407/dopovidi2020.06.030
Section: Materials Science
Language: Ukrainian
Abstract: 

Alloys of the Ti—Al and Ti—Ga binary systems, as well as alloys of the Ti—Al—Ga ternary system, are obtained by the arc melting, annealed at 850 °С, and studied by the X-ray powder diffraction method. As a result, the existence of four binary aluminides (Ti3Al, TiAl, r-TiAl2, TiAl3) and eight binary galides (Ti3Ga, Ti2Ga, Ti5Ga3, Ti5Ga4, TiGa, Ti2Ga3, TiGa2, TiGa3) at 850 °С is confirmed It is shown that ternary compounds are not formed through the titanium, aluminum, and gallium interaction. TiAl—TiGa, TiAl2—TiGa2, and TiAl3—TiGa3 isostructural compounds form continuous solid solutions in the Ti—Al—Ga system, while Ti2Ga3, Ti5Ga4, and Ti2Ga binary galides form extended solid solutions up to 15, 6, and 10 at. % Al, respectively. Following phases are the equilibrium ones in the system: continuous Ti(Al,Ga)3, Ti(Al,Ga)2, Ti(Al,Ga) solid solutions, extended Ti2(Ga,Al)3, Ti5(Ga,Al)4, Ti2(Ga,Al) solid solutions, binary Ti3Al, Ti3Ga compounds, as well as the solid solution of the base of α-Ti metal (up to 15 at.% Al/Ga). As a result of this study, the isothermal section (850 °С) of the Ti—Al—Ga system is constructued in the full concentration range.

Keywords: aluminum, gallium, isothermal section, titanium, X-ray powder diffraction
References: 

1. Froes, F. H. (Ed.). (2015). Titanium: Physical Metallurgy, Processing, and Applications eBook. ASM International, Materials Park. Ohio 44073-0002.
2. Glazunov, S. G. & Yasinskij, K. K. (1993). Titanovye splavy dlya aviatsionnoj tekhniki i drugikh otraslej promy`shlennosti. Tekhnologiya legkikh splavov, 7-8, pp. 47-54 (in Russian).
3. Kitashima, T., Suresh, K. S., Yamabe-Mitarai, Y. & Iwasaki, S. (2014). Tensile Strength and Impact Toughness of Gallium-Bearing Near-α Titanium alloys. Materials Science Forum, 783, pp. 619-623.
4. Cochis, A., Azzimonti, B., Chiesa, R., Rimondini, L. & Gasik, M. M. (2019). Metallurgical Gallium Additions to Titanium Alloys Demonstrate a Strong Time-Increasing Antibacterial Activity without any Cellular Toxicity. ACS Biomater. Sci. Eng., 5, No. 6, pp. 2815-2820.
5. Antonova, N. V., Tretyachenko, L. A., Velikanova, T. Ya., &Martsenyuk, P. S. (1998). TiAl—TiGa section of the Ti—Al—Ga system. J. Alloys and Compounds, 264, pp. 167-172. https://doi.org/10.1016/S0925-8388(97)00257-0
6. Glazunov, S. G., Nikishov, O. A., Solonina, O. P., Sorokina, L. V., Ermolova, M. I. & Tkhorevskaya, Zh. D. (1974). Struktura i svojstva splavov sistemy` titan-alyuminij-gallij. Tekhnologiya legkikh splavov, No. 6, рр. 37-39 (in Russian).
7. Schuster, J. C. & Ipser, Y. (1990). Phases and phase relations in the partial system TiAl3—TiAl. Z. Metallk., 81, No. 6, pp. 389-396.
8. Kornilov, I. I., Py`laeva, E. I., Volkova, M. A., Kripyakevich, P. I. & Markiv, V. Ya. (1965). Fazovoe stroenie splavov dvojnoj sistemy` Ti—Al, soderzhashhikh ot 0 do 30 at. % Al. Dokl. akad. nauk. SSSR, 161, No. 4, pp. 843-846 (in Russian).
9. Okamoto, H. (2000). Al—Ti (Aluminum-Titanium). J. Phase Equilibria, 21, No. 3, p. 311. https://doi.org/10.1361/105497100770340101
10. Batalu, D., Cosmeleata, G. & Aloman, A. (2006). Critical analysis of the Ti-Al phase diagrams. UPB Sci. Bull., Series B, 68, No. 4, pp. 77-90.
11. Antonova, N. V. & Tretyachenko, L. A. (2001) Phase diagram of the Ti—Ga system. Journal of Alloys and Compounds, 317-318, pp. 398-405. https://doi.org/10.1016/S0925-8388(00)01416-X
12. Okamoto, H. (2002) Ga—Ti (Gallium-Titanium). J. Phase Equilibria, 23, No. 5, pp. 457-458. https://doi.org/10.1361/105497102770331505