Electrophysical properties of Sr2LaBIIIBIVO7 (BIII = Sc, In, BIV = Sn, Ti) with slab perovskite-like structure

Titov, YA
1Slobodyanik, MS
1Kuzmin, RN
1Polubinskii, VV
2Chumak, VV
1Taras Shevchenko National University of Kyiv
2Ivan Franko State University of Zhytomyr
Dopov. Nac. akad. nauk Ukr. 2020, 6:37-45
Section: Materials Science
Language: Ukrainian

The electrophysical properties of ceramic samples of new compounds Sr2LaBIIIBIVO7 (BIII = Sc, In, BIV = Ti, Sn) with two-slab structure were investigated by the method of impedance spectroscopy. The dependences of the complex impedance Z*(ν) of these compounds on the frequency of the probing sinusoidal electric signal and temperature were analyzed. The analysis of results indicates the considerable contribution of the ionic electroconductivity in Sr2LaBIIIBIVO7 ceramic samples. To simulate the impedance spectrum, we used the method of equivalent circuits, represented by radio engineering elements, which allows one to see, in the pure form, the properties of microcrystalline grains of ceramics, that is, the investigated material, without the influence of intergranular and electrode effects. The temperature dependence of the direct current electroconductivity, the frequency dependences of electroconductivity, imaginary components of impedance, and electrical module in the temperature range from 300 K to 800 K were investigated. It was found that the activation energy of the direct current electroconductivity for all Sr2LaBIIIBIVO7 ceramic samples was over the range 0.285 eV to 0.301 eV, and the conductivity values themselves differed by two orders of values. The frequency dependence of the electroconductivity is described by a universal power law with allowing a correlation between direct and reverse ion jumps. A definite contribution to the ionic component of the electroconductivity can be made by the lanthanum and strontium cations localized at the boundaries of perovskite-like blocks. One of the reasons for the higher electroconductivity values for indium-containing compounds can be the greater deformation of the In(Sn,Ti)O6 octahedra than that of the Sc(Sn,Ti)O6 octahedra.

Keywords: activation energy., An+1BnO3n+1 compounds, ceramics, electroconductivity, impedance, slab perovskite-like structure

1. Titov, Y. A., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S. & Polubinskii, V. V. (2014). Synthesis and crystal structure of two-layer indotitanates Sr2LnInTiO7. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 120-125 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.06.120
2. Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S. & Polubinskii, V. V. (2015). Synthesis and crystal structure of layer scandotitanates Sr2LnScTiO7. Dopov. Nac. akad. nauk Ukr., No. 2, pp. 130-136 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.02.130
3. Titov, Y. A., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S. & Polubinskii, V. V. (2015). New compounds Sr2LnBIIISnO7 (BIII—Sc, In) with two-layer perovskite-like structure. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 117-122 (in Ukrainian). https://doi.org/10.15407/dopovidi2015.04.117
4. Barsoukov, E. & Macdonald, J. R. (2005). Impedance spectroscopy theory, experiment, and applications. Hoboken, NJ: Wiley.
5. Pilar, M. M., Miguel, A. G., Sebastian, B., Jesus, S. & Enrique, R. L. (2005). Nominal vs. actual stoichiometries in Al-doped NASICONs: A study of the Na1.4Al0.4M1.6(PO4)3 (M = Ge, Sn, Ti, Hf, Zr) family. Solid State Ionics, 176, No. 17-18, pp. 1613-1625. https://doi.org/10.1016/j.ssi.2005.04.009
6. Derek, C. S. (1995). Characterization of electro-materials using ac impedance spectroscopy. Bol. Soc. Esp. Cerám. Vidrio, 34, No. 2, pp. 55-65.
7. Hodge, I. M., Ingram, M. D. & West, A. R. (1976). Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfac. Electrochem., 74, No. 2, pp. 125-143.
8. Mančić, D., Paunović, V., Vijatović, M., Stojanović, B. & Živković, Lj. (2008). Electrical characterization and impedance response of lanthanum doped barium titanate ceramics. Sci. Sinter., 40, No. 3, pp. 283-294. https://doi.org/10.2298/SOS0803283M
9. Dev, K. M. & Sinha, T. P. (2013). Electrical impedance and electric modulus approach of double perovskite Pr2ZnZrO6 ceramics. J. Mater. Sci. Mater. El., 24, No. 11, pp. 4399-4405. https://doi.org/10.1007/s10854-013-1416-7
10. Berthier, F., Diard, J.-P. & Michel, R. (2001). Distinguishability of equivalent circuits containing CPEs: Part I. Theoretical part. J. Electroanal. Chem., 510, No. 1-2, pp. 1-11. https://doi.org/10.1016/S0022-0728(01)00554-X
11. Jonscher, A. K. (1974). Hopping losses in polarisable dielectric media. Nature, 250, No. 5463, pp. 191-193. https://doi.org/10.1038/250191a0
12. Funke, K. (1993). Jump relaxation in solid electrolytes. Prog. Solid State Chem., 22, No. 2, pp. 111-195. https://doi.org/10.1016/0079-6786(93)90002-9
13. Almond, D. P., Duncan, G. K. & West, A. R. (1983). The determination of hopping rates and carrier concentra tions in ionic conductors by a new analysis of ac conductivity. Solid State Ionics, 8, No. 2, pp. 159-164. https://doi.org/10.1016/0167-2738(83)90079-6
14. Almond, D. P. & West, A. R. (1983). Mobile ion concentrations in solid electrolytes from an analysis of a.c. conductivity. Solid State Ionics, 9-10, Pt. 1, pp. 277-282. https://doi.org/10.1016/0167-2738(83)90247-3
15. Borsa, F., Torgeson, D. R., Martin, S. W. & Patel, H. K. (1992). Relaxation and fluctuations in glassy fast-ion conductors: Wide-frequency-range NMR and conductivity measurements. Phys. Rev., B46, No. 2, pp. 795-800. https://doi.org/10.1103/PhysRevB.46.795