Isovalent substitution of the anionic sublattice of phases with general composition KSrВі2(PO4)3-х(VO4)x (х = 0÷3.0)

1Strutynska, NYu.
1Slobodyanik, MS
Ramanovska, KS
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 7:79-85
https://doi.org/10.15407/dopovidi2020.07.079
Section: Chemistry
Language: Ukrainian
Abstract: 

The peculiarities of an influence of the isovalent substitution in the anionic sublattice of the langbeinite-related matrix KSrВі2(PO4)3 on the formation of phosphate-vanadates KSrВі2(PO4)3–х(VO4)x have been investigated for values x = 0.1, 0.25, 0.5, 0.75 and 3.0 using the solid state reaction method. It was found that the single phase langbeinite-related (cubic system, space group Р213) phosphate-vanadates have been obtained at the no significant substitution of phosphate by a vanadate group with the values х = 0.1, 0.25 and 0.5. Calculated lattice parameters for prepared KSrВі2(PO4)3–х(VO4)x (х = 0.1, 0.25 and 0.5) are in the range 9.93-10.1 Å. In the case of phases with values х = 0.75 and 3.0, the mixtures of phases have been prepared. The presence of VO4- and PO4-tetrahedra in the composition of new phases KSrВі2(PO4)3–х(VO4)x (х = 0.1, 0.25, and 0.5) was confirmed by the vibration modes in the their FTIR-spectra in the ranges 980-800 and 900-1150 сm–1, respectively. Based on results of thermal analysis, the prepared new langbeinite-related phosphate-vanadate KSrВі2(PO4)2.75(VO4)0.25 and KSrВі2(PO4)2.5(VO4)0.5 melt at a temperature above 1000 ºС and contain 0.7-1.3 wt % of sorbed water. It was shown that an increasing amount of vanadate in the langbeinite-type structure led to a decrease in the band gap from 3.0 eV for KSrВі2(PO4)2.9(VO4)0.1 to 2.8 еV for KSrВі2(PO4)2.75(VO4)0.25. Obtained samples have been characterized using the powder X-Ray diffraction method, thermogravimetry, differential thermal analysis, and FTIR- and electronic spectroscopies.

Keywords: complex phosphate, langbeinite, powder X-ray diffraction, thermal analysis
References: 

1. Battle, P. D., Gibb, T. C., Nixon, S. & Harrison W. T. A. (1988). The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3. J. Solid State Chem., 75, pp. 21-29. https://doi.org/10.1016/0022-4596(88)90299-X
2. Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure. J. Solid State Chem., 179, pp. 3461-3466. https://doi.org/10.1016/j.jssc.2006.07.015
3. Shpanchenko, R. V., Lapshina, O. A., Antipov, E. V., Hadermann, J., Kaul, E. E. & Geibel, C. (2005). New lead vanadium phosphate with langbeinite-type structure: Pb1.5V2(PO4)3. Mater. Res. Bull., 40, pp. 1569-1576. https://doi.org/10.1016/j.materresbull.2005.04.037
4. Slobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V.N. & Guütlich, P. (2012). K2MIII 2(MVIO4)(PO4)2 (MIII = Fe, Sc; MVI = Mo, W), Novel members of the lagbeini terelated family: synthesis, structure, and magnetic properties. Inorg. Chem., 51, pp. 1380-1385. https://doi.org/10.1021/ic201575v
5. Kumar, S. & Gopal, B. (2016). New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage. J. Alloy Compd., 657, pp. 422-429. https://doi.org/10.1016/j.jallcom.2015.10.088
6. Kumar, S. P. & Gopal, B. (2014). Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12. J. Alloy Compd., 615, pp. 419-423. https://doi.org/10.1016/j.jallcom. 2014.06.192
7. Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). A family of phosphates of langbeinite structure. Crystal-chemical aspect of radioactive waste immobilization. Radiochem., 53, pp. 51-62. https://doi.org/10.1134/S1066362211010073.
8. Speer, D. & Salje, E. (1986). Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type mM2 + +K2(SO4)3, M+ += Mg, Ni, Co, Zn, Ca. Phys. Chem. Miner., 13, pp. 17-24. https://doi.org/10.1007/BF00307309
9. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2007). Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1.822Nd0.822Zr1.178(PO4)3 and K2LuZr(PO4)3. Cryst. Res. Tech., 42, pp. 1076-1081. https://doi.org/10.1002/crat.200710961
10. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007). Mn3+ stabilization in complex phosphate–fluoride fluxes and its incorporation into langbeinite framework. J. Solid State Chem.,180, pp. 2838-2844. https://doi.org/10.1016/j.jssc.2007.07.022
11. Strutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, А. N. (2015). Interaction in the molten system Rb2O—P2O5—TiO2—NiO. Crystal structure of the langbeinite-related Rb2Ni0.5Ti1.5(PO4)3. Cryst. Res. Tech., 43, pp. 362-3116. https://doi.org/10.1002/crat.201500050
12. Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007). Equilibrium langbeinite-related phosphates Cs1+xLnxZr2-x(PO4)3 (Ln  Sm-Lu) in the melted sys tems Cs2O—P2O5—LnF3—ZrF4. Acta Crystallogr., В63, pp. 819-827. https://doi.org/10.1107/S0108768107049385
13. Hidouri, M., López, M. L., Pico, C., Wattiaux, A. & Ben Amara, M. (2012). Synthesis and characterization of a new iron phosphate KSrFe2(PO4)3 with a langbeinite type structure. J. Mol. Struct., 1030, pp. 145-148. https://doi.org/10.1016/j.molstruc.2012.04.002