Callusogenesis features of anthocyanin contrasting varieties of Lactuca sativa L

TitleCallusogenesis features of anthocyanin contrasting varieties of Lactuca sativa L
Publication TypeJournal Article
Year of Publication2020
AuthorsPryimak, YV, Smirnov, OE, Taran, NY, Schwartau, VV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2020.07.094
Issue7
SectionBiology
Pagination94-100
Date Published7/2020
LanguageUkrainian
Abstract

The selection of conditions for the callusogenesis introduction of two anthocyanin contrasting varieties of lettuce (Lactuca sativa L.) — Lolo Bionda (green) and Lolo Rossa (red) was approved. The effect of phytohormonal ratio, treatment with sterilizing agents on the induction of callusogenesis, calli area, consistency and structure of the six-week primary calli of both varieties were compared. Using media with a ratio of growth regulators: 6-benzylaminopurine (BAP) — 0.3 mg/L, naphthylacetic acid (NAA) — 2 mg/L, 2,4-dichlorophenoxyacetic acid (2,4-D) — 0.2 mg/L, and BAP — 10 mg/L, NAA — 0.5 mg/L led to callusogenesis stimulation from the cotyledon leaves explants of both varieties aseptic seedlings. A significant growth stimulation of primary Lolo Rossa calluses under sterilization of explants with mercury chloride and sodium hypochlorite was found. The heterogeneity of the cellular content of calls tissue and the possibility of obtaining loose and compact calluses of both varieties were investigated.

Keywordscallusogenesis, Lactuca sativa L., Lolo Bionda, Lolo Rossa, primary callus
References: 

1. FAOSTAT. Lettuce and chicory crop production. Food and Agriculture Organization Statistical Division (2014). Retrieved from http://faostat3.fao.org/faostat-gateway/go/to/search/lettuce
2. Cheng, D. M., Pogrebnyak, N., Kuhn, P., Krueger, C. G., Johnson, W. D. & Raskin, I. (2014). Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One, 9, e 91571. https://doi.org/10.1371/journal.pone.0091571
3. Armas, I., Pogrebnyak, N. & Raskin, I. (2017). A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods, 13, pp. 58. https://doi.org/10.1186/s13007-017-0208-0
4. Vanjildorj, E., Bae, T.-W., Riu, K.-Z., Kim, S.-Y. & Lee, H.-Y. (2005). Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell, Tissue Organ. Cult., 83, pp. 41-50. https://doi.org/10.1007/s11240-005-3800-3
5. Xinrun, Z. & Conner, A. J. (1992). Genotypic effects on tissue culture response of lettuce cotyledons. J. Genet. Breed., 46, pp. 287-290.
6. Ampomah-Dwamena, C., Conner, A. J. & Fautrier, A. G. (1997). Genotypic response of lettuce cotyledons to regeneration in vitro. Sci. Hortic. (Amsterdam), 71, pp. 137-145. https://doi.org/10.1016/S0304-4238(97)00098-8
7. Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., Yokota, A. & Tomizawa, K.-I. (2006). Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res., 15, pp. 205-217. https://doi.org/10.1007/s11248-005-3997-2
8. Chang, C. M., Penna, S. & Bhagwat, S. G. (2012). Callus induction and plant regeneration from different Triticum species. Asian Australas. J. Plant Sci. Biotechnol., 6, Sp. Iss. 1, pp. 56-62.
9. Konotop, Y. O., Karpets, L. A., Zinchenko, A. V., Lopatko, S. K., Kovalenko, M. S. & Smirnov, O. E. (2019). Influence of citrate-stabilized Cu- and Mn-nanocolloids on the growth and proliferative activity of Allium cepa L. apical meristems. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 86-92 (in Ukrainian). https://doi.org/10.15407/dopovidi2019.01.086
10. Mohebodini, M., Javaran, M. J., Mahboudi, F. & Alizadeh, H. (2011). Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of lettuce (Lactuca sativa L.). Aust. J. Crop Sci., 5, pp. 92-95.
11. Maina, S. M., Emongor Q., Sharma K. K., Gichuki S., Gathaara M. & de Villiers S. M. (2010). Surface sterilant effect on the regeneration efficiency from cotyledon explants of groundnut (Arachis hypogea L.) varieties adapted to Eastern and Southern Africa. Afr. J. Biotechnol., 9, No. 20, pp. 2866-2871.
12. Tyukavin, G. B. (2007). Carrot biotechnology. Moscow: VNIISSOK (in Russian).
13. Chiavegatto, R. B., Castro, A. H. F., Marçal, M. G., Pádua, M. S., Alves, E. & Techio, V. H. (2015). Cell viability, mitotic index and callus morphology of Byrsonima verbascifolia (Malpighiaceae). Trop. Plant Biol., 8, No. 3-4, pp. 87-97. https://doi.org/10.1007/s12042-015-9150-3
14. Hovhannisyan, N. A., Mkrtumyan, M. K. & Yesayan, A. G. (2008). Cytogenetic description of Nerium olean der callus culture. Biol. J. Armenia, 60, No. 1-2, pp. 130-134 (in Russian).
15. Tikhomirova, L. I., Bazarnova, N. G. & Sinitsyna, A. A. (2018). Histochemical study of xylem cells in in vitro culture of Iris sibirica L. Russ. J. Bioorg. Chem., 44, No. 7, pp. 860-869. https://doi.org/10.1134/S1068162018070129