Synthesis and properties of na nomagnetite for the preparation of biocomposites

TitleSynthesis and properties of na nomagnetite for the preparation of biocomposites
Publication TypeJournal Article
Year of Publication2021
AuthorsSynytsia, AO, Iatsenko, AP, O. Sych, Y, Babutina, TY, Тоmila, TV, Bykov, OI, Perekos, AO, Boshytska, NV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2021.01.051
Issue1
SectionMaterials Science
Pagination51-57
Date Published1/2021
LanguageUkrainian
Abstract

Magnetite powder (FeO·Fe2O3 or Fe3O4) is obtained by the chemical precipitation method, using FeCl3·6H2O and FeCl2·4H2O as a starting materials in the presence of hydrazine N2H4 at a temperature of 80 °C. X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy are used for the study of the phase composition and morphology of the synthesized powder. Its specific surface area and magnetic properties such as, in particular, the specific saturation magnetization, coercive force and residual induction are investigated. It is established that the composition of the synthesized powder is represented by magnetite as the main phase with a small admixture of hematite. It is shown that the particles of the obtained magnetite have sizes of 33-84 nm and tend to the agglomeration. The prepared powder has superparamagnetic properties (specific magnetization — 35 A · m2/kg, coercive force — 0.24 kA/m, residual induction — 0.009 T) and is promising for the biocomposite creation.

Keywordschemical precipitation method, hydrazine, magnetic properties, magnetite, nanopowders
References: 

1. Wulandari, I. O., Sulistyarti, H., Safitri, A., Santjojo, D. J. & Sabarudin, A. (2019). Development of synthesis method of magnetic nanoparticles modified by oleic acid and chitosan as a candidate for drug delivery agent. J. Appl. Pharm. Sci., 9, No. 07, pp. 001-011. https://doi.org/10.7324/JAPS.2019.90701
2. Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Ab Rahman, M. Z. & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18, pp. 7533-7548. https://doi.org/10.3390/molecules18077533
3. Shabestari Khiabani, S., Farshbaf, M., Akbarzadeh, A. & Davaran, S. (2017). Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cells. Nanomed. Biotechnol., 45, No. 1, pp. 6-17. https://doi.org/10.3109/21691401.2016.1167704
4. Bordbar, A. K., Rastegari, A. A., Amiri, R., Ranjbakhsh, E., Abbasi, M. & Khosropour, A. R. (2014). Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol. Res. Int., 2014, 705068. https://doi.org/10.1155/2014/705068
5. Mamani, J. B., Gamarra, L. F. & de Souza Brito, G. E. (2014). Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications. Mater. Res., 17, pp. 542-549. https://doi.org/10.1590/S1516-14392014005000050
6. Berry, C. C. & Curtis, A. S. (2003). Functionalisation of magnetic nanoparticles for applications in bio medicine. J. Phys. D. Appl. Phys., 36, No. 13, pp. 198-206.
7. Wang, X. L., Wei, L., Tao, G. H. & Huang, M. Q. (2011). Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker. Chinese Chem. Lett., 22, pp. 233-236. https://doi.org/10.1016/j.cclet.2010.09.016
8. Li, B., Weng, X., Wu, G., Zhang, Y., Lv, X. & Gu, G. (2017). Synthesis of Fe3O4/polypyrrole/polyani line nanocomposites by in-situ method and their electromagnetic absorbing properties. J. Saudi Chem. Soc., 21, pp. 466-472. https://doi.org/10.1016/j.jscs.2016.11.005
9. Bhaumik, M., Maity, A. & Gupta, V. K. (2017). Synthesis and characterization of Fe0/TiO2 nano-composites for ultrasound assisted enhanced catalytic degradation of reactive black 5 in aqueous solutions. J. Colloid Interface Sci., 506, pp. 403-414. https://doi.org/10.1016/j.jcis.2017.07.016
10. Basavaiah, K., Pavan Kumar, Y. & Prasada Rao, A. V. (2013). A facile one-pot synthesis of polyaniline/magnetite nanocomposites by micelles-assisted method. Appl. Nanosci., 3, рр. 409-415. https://doi.org/10.1007/s13204-012-0148-y
11. An, B., Cheng, K., Wang, C., Wang, Y. & Lin, W. (2016). Pyrolysis of metal-organic frameworks to Fe3O4@ Fe5C2 core–shell nanoparticles for Fischer—Tropsch synthesis. Acs. Catal., 6, No. 6, pp. 3610-3618. https://doi.org/10.1021/acscatal.6b00464
12. Waldron, R. D. (1955). Infrared spectra of ferrites. Phys. Rev., 99, pp. 1727-1735. https://doi.org/10.1103/PhysRev.99.1727
13. Schwertmann, U. & Cornell, R. M. (1991). Iron oxides in the laboratory: preparation and characterization. Weinheim: VCH Publishers.
14. Gotic, M. & Musić, S. (2007). Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct., 834–836, pp. 445-453. https://doi.org/10.1016/j.molstruc.2006.10.059
15. Petit, S., Righi, D. & Madejová, J. (2006). Infrared spectroscopy of NH4 +-bearing and saturated clay minerals: A review of the study of layer charge. Appl. Clay Sci., 34, pp. 22-30. https://doi.org/10.1016/j.clay.2006.02.007