Identification of carbonic anhydrase activity associated with protein complexes of photosynthetic membranes of spinach chloroplasts

1Semenihin, AV, 1Zolotareva, EK
1M. G. Kholodhy Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 6:151-155
https://doi.org/10.15407/dopovidi2014.06.151
Раздел: Biochemistry
Язык: Ukrainian
Аннотация: 

Protein complexes of photosynthetic membranes of spinach chloroplasts were separated by native charge shift electrophoresis after the solubilization of membranes by a non-ionic detergent digitonin. To determine the areas of the gel that contained the ATP synthase complex and its isolated catalytic part (CF1), the color reaction for ATFase activity was used. Due to the presence of cytochromes, the b6f thylakoid membrane complex was red in the unstained gel. The localization of cytochrome b6f complex, ATP synthase, and CF1 was confirmed by the subunit analysis of the corresponding protein zones by SDS-electrophoresis. Using nondenaturing electrophoresis followed by detection of carbonic anhydrase (CA) activity in the gel stained with bromothymol blue, the following carriers of CA were detected: photosystem II, cytochrome b6f complex, and ATP synthase. The data favor the assumption that multiple forms of thylakoid carbonic anhydrase take part in the internal proton transfer from the centers of their evolution to the ATP synthase.

Ключевые слова: carbonic anhydrase activity, photosynthetic membranes, spinach chloroplasts
Ссылки: 

1. Ignatova L. K., Rudenko N. N., Mudrik V. A. et al. Photosynth. Res., 2011, 110, No. 2: 89–98. https://doi.org/10.1007/s11120-011-9699-0
2. Shutova T., Kenneweg H., Buchta J. et al. EMBO J., 2008, 27, No. 5: 782–791. https://doi.org/10.1038/emboj.2008.12
3. Ignatova L. K., Rudenko N. N., Khristin M. S., Ivanov B. N. Biokhimiia, 2006, 71, No. 5: 651–659.
4. Zolotareva E. K. Fiziologiia i biokhimiia kult. rastenii, 2010, 42, No. 1: 37–50 (in Russian).
5. Aro E.-M., Suorsa M., Rokka A. et al. J. Exp. Bot., 2005, 56: 347–356. https://doi.org/10.1093/jxb/eri041
6. Arnon D. I. Plant Physiol., 1949, 24, No. 1: 1–154. https://doi.org/10.1104/pp.24.1.1
7. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. J. Biol Chem., 1951, 193: 265–275.
8. Anderson L., Borg H., Mikaelsson M. FEBS Lett., 1972, 20: 199–202. https://doi.org/10.1016/0014-5793(72)80793-2
9. Kolesnichenko A. V., Ostroumova E. A., Zykova V. V. et al. Fiziologiia rastenii, 2000, 47, No. 2: 199–202 (in Russian).
10. Laemmli U. K. Nature, 1970, 227: 680–685. https://doi.org/10.1038/227680a0
11. Allen J. M., Hyncik G. J. Histochem. Cytochem., 1963, 11, No. 2: 169–175. https://doi.org/10.1177/11.2.169
12. Gomori G. Meth. Enzymol., 1955, 1: 138–146. https://doi.org/10.1016/0076-6879(55)01020-3
13. Edwards L. J., Patton R. L. Stain Technol., 41, No. 6: 333–334. https://doi.org/10.3109/10520296609116335
14. Arvi S. J., Suorsa M., Paakkarinen V., Aro E.-M. Biochem. J., 2011, 439: 207–214. https://doi.org/10.1042/BJ20102155
15. McCarty R. E. J. Exp. Biol., 1992, 172: 431–441.