Conformational properties of quercetin: quantum chemistry investigation

TitleConformational properties of quercetin: quantum chemistry investigation
Publication TypeJournal Article
Year of Publication2014
AuthorsProtsenko, IO, Hovorun, DM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.03.153
Issue3
SectionBiology
Pagination153-157
Date Published3/2014
LanguageUkrainian
Abstract

The conformational analysis performed at the MP2/6–311++G(d,p)//DFT B3LYP/6-31G(d,p) theory level reveals as many as 12 conformations of a quercetin molecule with relative Gibbs energies from 0 to 5.4 kcal/mole. The spatial structure of the most energetically favorable conformation and its geometric characteristics have been found. It is found that a molecule of quercetin in the crystal state becomes much deformed to a nonplanar structure.

Keywordsconformational properties, quercetin
References: 

1. Williamson G., Manach C. Am. J. Clin. Nutr., 2005, 81 243–255.
2. Boots A.W., Haenen G. R., Bast A. Eur. J. Pharmacol., 2008, 582, No. 2–3: 325–337. https://doi.org/10.1016/j.ejphar.2008.03.008
3. Lamson D.W., Brignall M. S. Alt. Med. Rev., 2000, 5, No. 3: 196–208.
4. Egert S., Bosy-Westphal A., Seiberl J. et al. Br. J. Nutr., 2009, 102, No. 7: 1065–1074. https://doi.org/10.1017/S0007114509359127
5. Smith A. J., Kavuru P., Wojtas L. et. al. Mol. Pharm., 2011, 8, No. 5: 1867–1876. https://doi.org/10.1021/mp200209j
6. Protein data bank: PDB Chemical Component QUE. Retrieved from http://www.pdb.org/pdb/ligand/ligandsummary.do?hetId=QUE&sid=1H1I/
7. Protsenko I. O., Bulavin L. A., Hovorun D. M. WDS’10 Proc. Contributed Papers, 2010, Pt. 3: 51–54.
8. Bogdan T. V., Trigubenko S. A., Hovorun D. M. et al. Nauk. zap. NaUKMA, 2001, 19: 465–460 (in Ukrainian).
9. Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
10. Rossi M., Rickles L. F., Halpin W. A. Bioorgan. Chem., 1986, 14, No. 1: 55–69. https://doi.org/10.1016/0045-2068(86)90018-0
11. Protein data bank: PDB Chemical Component QUE. Retrieved from http://ligand-expo.rcsb.org/reports/Q/QUE.