Title | Conformational properties of quercetin: quantum chemistry investigation |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Protsenko, IO, Hovorun, DM |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2014.03.153 |
Issue | 3 |
Section | Biology |
Pagination | 153-157 |
Date Published | 3/2014 |
Language | Ukrainian |
Abstract | The conformational analysis performed at the MP2/6–311++G(d,p)//DFT B3LYP/6-31G(d,p) theory level reveals as many as 12 conformations of a quercetin molecule with relative Gibbs energies from 0 to 5.4 kcal/mole. The spatial structure of the most energetically favorable conformation and its geometric characteristics have been found. It is found that a molecule of quercetin in the crystal state becomes much deformed to a nonplanar structure. |
Keywords | conformational properties, quercetin |
1. Williamson G., Manach C. Am. J. Clin. Nutr., 2005, 81 243–255.
2. Boots A.W., Haenen G. R., Bast A. Eur. J. Pharmacol., 2008, 582, No. 2–3: 325–337. https://doi.org/10.1016/j.ejphar.2008.03.008
3. Lamson D.W., Brignall M. S. Alt. Med. Rev., 2000, 5, No. 3: 196–208.
4. Egert S., Bosy-Westphal A., Seiberl J. et al. Br. J. Nutr., 2009, 102, No. 7: 1065–1074. https://doi.org/10.1017/S0007114509359127
5. Smith A. J., Kavuru P., Wojtas L. et. al. Mol. Pharm., 2011, 8, No. 5: 1867–1876. https://doi.org/10.1021/mp200209j
6. Protein data bank: PDB Chemical Component QUE. Retrieved from http://www.pdb.org/pdb/ligand/ligandsummary.do?hetId=QUE&sid=1H1I/
7. Protsenko I. O., Bulavin L. A., Hovorun D. M. WDS’10 Proc. Contributed Papers, 2010, Pt. 3: 51–54.
8. Bogdan T. V., Trigubenko S. A., Hovorun D. M. et al. Nauk. zap. NaUKMA, 2001, 19: 465–460 (in Ukrainian).
9. Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
10. Rossi M., Rickles L. F., Halpin W. A. Bioorgan. Chem., 1986, 14, No. 1: 55–69. https://doi.org/10.1016/0045-2068(86)90018-0
11. Protein data bank: PDB Chemical Component QUE. Retrieved from http://ligand-expo.rcsb.org/reports/Q/QUE.