Spectral analysis of locally finite graphs with one infinite ray

TitleSpectral analysis of locally finite graphs with one infinite ray
Publication TypeJournal Article
Year of Publication2014
AuthorsLebid, VO, Nizhnik, LP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published3/2014

A complete spectral analysis of countable graphs defined as the union of a finite graph and a semibounded infinite chain is given. The spectrum of the adjacency matrix of graphs is defined, a spectral measure is constructed, the eigenvectors and the spectral expansion in eigenvectors are presented.

Keywordsfinite graphs, infinite ray, spectral analysis

1. Tsvetkovich D., Dub M., Zakhs Kh. Spectra of graphs. Theory and application. Kyiv: Nauk. dumka, 1984 (in Russian).
2. Moskaleva Yu. P., Samoilenko Yu. S. Introduction to the spectral theory of graphs. Kyiv: Tsentr ucheb. lit., 2007 (in Russian).
3. Brouwer A. E., Haemers W. H. Spectra of graphs. New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1939-6
4. Mohar B. Linear Algebra Appl., 1982, 48: 245–256. https://doi.org/10.1016/0024-3795(82)90111-2
5. Mohar B., Woess W. Bull. London Math. Soc., 1989, 21: 209–234. https://doi.org/10.1112/blms/21.3.209
6. Mantoiu M., Richard S., Tiedra de Aldecoa R. Spectral analysis for adjacency operators on graphs. arXiv:math-ph/0603020v1 7 Mar 2006.
7. von Below J. Linear Algebra Appl., 2009, 431: 1–19. https://doi.org/10.1016/j.laa.2008.10.030
8. Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. et al. Differential equations on geometric graphs. Moscow: Fizmatlit, 2004 (in Russian).
9. Berezansky Yu. M. Expansion in eigenfunctions of self-adjoint operators. Kyiv: Nauk. dumka, 1965 (in Russian).
10. Simon B. Szego’s theorem and its descendants: Spectral theory for L2 perturbations of orthogonal polynomials. Princeton, NY: Princeton Univ. Press, 2011.
11. Lebid V. O., Nyzhnyk L. P. Nauk. zap. NaUKMA, 2013, 139: 18–22 (in Russian).