Title | Peculiarities of the development of hydrogels based on chitosan and poly(ethylene glycol) disuccinate at elevated temperature |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Zholobko, OYu., Tarnavchyk, IT, Voronov, AS, Budishevska, OG, Kohut, AM, Voronov, SA |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2014.05.128 |
Issue | 5 |
Section | Chemistry |
Pagination | 128-137 |
Date Published | 5/2014 |
Language | Ukrainian |
Abstract | The reaction of poly(ethylene glycol) disuccinates and 1-O-benzyl-2-amino-2-deoxy-D-glucopyranoside (1-benzylglucosamine), which resembles a repeating unit in a chitosan macromolecule, has been studied at an elevated temperature without additional activating agents and catalysts. The obtained results indicate that the interaction between the amino groups of 1-benzylglucosamine and the carboxylic groups of poly(ethylene glycol) disuccinates has led to the formation of covalent amide bonds. Simultaneously, the aminolysis reaction occurs as a result of the interaction between the ester groups of poly(ethylene glycol) disuccinates and the amino groups of chitosan, forming intermolecular amide bonds as well. New covalently cross-linked biocompatible hydrogels based on chitosan and poly(ethylene glycol) disuccinates have been synthesized. The polymeric scaffold of the hydrogels is formed through these reactions. The hydrogel properties (e. g., swelling, drug solubilization, and mechanical properties) could be controlled through the reagents concentration, as well as through the COOH/NH2 functional group ratio and the poly(ethylene glycol) chain length. |
Keywords | chitosan, elevated temperature, hydrogels |
1. Muzzarelli R. Natural chelating polymers. Oxford: Pergamon Press, 1973: 144–176.
2. Yao K., Li J., Yao F., Yin Y. Chitosan-based hydrogels. Functions and applications. Boca Raton: CRC Press, 2012.
3. Peniche C., Argüelles-Monal W., Peniche H., Acosta N. Macromol. Biosci., 2003, 3: 511–520. https://doi.org/10.1002/mabi.200300019
4. Bhattarai N., Li Z. S., Gunn J. et al. Adv. Mater., 2009, 21: 2792–2797. https://doi.org/10.1002/adma.200802513
5. Hu Y., Du Y., Yang J. et al. Polymer., 2007, 48: 3098–3106. https://doi.org/10.1016/j.polymer.2007.03.063
6. Hu F.-Q., Meng P., Dai Y.-Q. et al. Eur. J. Pharm. Biopharm., 2008, 70: 749–757. https://doi.org/10.1016/j.ejpb.2008.06.015
7. Bian F., Jia L., Yu W., Liu M. Carbohydr. Polym., 2009, 76: 454–459. https://doi.org/10.1016/j.carbpol.2008.11.008
8. Kirschner C. V., Anseth K. S. Acta Materialia, 2013, 61: 931–944. https://doi.org/10.1016/j.actamat.2012.10.037
9. Lee K. Y., Mooney D. J. Chem. Rev., 2001, 101: 1869–1879. https://doi.org/10.1021/cr000108x
10. Chen S.-H., Tsao C.-T., Chang C.-H. et al. Macromol. Mater. Eng., 2013, 298.: 429– 438. https://doi.org/10.1002/mame.201200054
11. Mi F.-L., Kuan C.-Y., Shyu S.-S. et al. Biomaterials, 2000, 41: 389–396.
12. Gupta K. C., Jabrail F. H. Carbohydr. Res., 2006, 341: 744–756. https://doi.org/10.1016/j.carres.2006.02.003
13. Welsh E. R., Price R. R. Biomacromolecules, 2003, 4: 1357–1361. https://doi.org/10.1021/bm034111c