Title | Novel structural class of 5S rDNA of Rosa wichurana Crep. |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Tynkevich, Yu.O, Volkov, RA |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2014.05.143 |
Issue | 5 |
Section | Biology |
Pagination | 143-148 |
Date Published | 5/2014 |
Language | Russian |
Abstract | Genomic region encoding 5S rRNA (5S rDNA) is present in all eukaryotic organisms and represents an attractive model for investigating the mechanisms of molecular evolution of tandem arranged repeated sequences in various taxonomic groups. In order to clarify the molecular evolution of 5S rDNA in genus Rosa, several rDNA repeated units of diploid species R. wichurana (sect. Synstylae) were cloned, sequenced, and compared with rDNA sequences of other diploids: R. nitida (sect. Carolinae), R. rugosa (sect. Cinnamomeae), and R. sericea (sect. Pimpinellifoliae). It has been revealed that only one variant of 5S rDNA, which contains intact promoter elements in the intergenic spacer region (IGS) and appears to be transcriptionally active is present in the genome R. wichurana. A level of sequence similarity (from 52.8 to 57.6%) between the IGS of R. wichurana and three other diploid species is unusually low, demonstrating that a novel structural variant of 5S rDNA is characteristic of representatives of sect. Synstylae and suggesting the accelerated rate of rDNA molecular evolution in the section. |
Keywords | 5S rDNA, Rosa wichurana Crep. |
1. Volkov R. A., Zanke C., Panchuk I. I., Hemleben V. Theor. Appl. Genet., 2001, 103 1273–1282. https://doi.org/10.1007/s001220100670
2. Coen E. S., Thoday J. M., Dover G. Nature, 1982, 295, No. 5850: 564–568. https://doi.org/10.1038/295564a0
3. Fulnecek J., Lim K. Y., Leitch A. R. et al. Heredity, 2002, 88: 19–25. https://doi.org/10.1038/sj.hdy.6800001
4. Tinkevich Yu. O., Volkov R. A. Visn. Ukr. tov-va genetykiv i selektsineriv, 2011, 9, No. 2: 276–282 (in Ukrainian).
5. Tinkevich Yu. O., Volkov R. A. Biol. systemy, 2011, 3, No. 4: 315–321 (in Ukrainian).
6. Tynkevich Y. O., Volkov R. A. Cytol. Genet., 2014, 48, No. 1: 3–9. https://doi.org/10.3103/S0095452714010095
7. Wisseman V., Ritz C. M. Botan J. Linn. Soc., 2005, 147: 275–290. https://doi.org/10.1111/j.1095-8339.2005.00368.x
8. Rogers S. O., Bendich A. J. Plant Mol. Biol., 1985, 5: 69–76. https://doi.org/10.1007/BF00020088
9. Sambrook J., Fritsch E., Maniatis T. Molecular cloning. Vol. 1–3. New York: Cold Spring Harbor Laboratory, 1989.
10. Ma X. Q., Duan J. A., Zhu D. Y. et al. Phytochem., 2000, 54: 363–368. https://doi.org/10.1016/S0031-9422(00)00111-4
11. Takahata N., Kimura M. Genetics., 1981, 98: 641–657.
12. Douet J., Tourmente S. Heredity, 2007, 99: 5–13. https://doi.org/10.1038/sj.hdy.6800964
13. Christian S., Diethard T. Nucl. Acid. Res., 1992, 20, No. 2: 211–215. https://doi.org/10.1093/nar/20.2.211
14. Kruglyak S., Durrett R. T., Schug M. D., Aquadro C. F. Proc. Natl. Acad. Sci. USA, 1998, 95:10774–10778. https://doi.org/10.1073/pnas.95.18.10774