On the compactness and the uniform continuity of a resolvent family for a fractional differential equation

TitleOn the compactness and the uniform continuity of a resolvent family for a fractional differential equation
Publication TypeJournal Article
Year of Publication2014
AuthorsAntoniouk, AV, Kochubei, AN, Piskarev, SI
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.06.007
Issue6
SectionMathematics
Pagination7-12
Date Published6/2014
LanguageRussian
Abstract

The compactness and the uniform continuity for a resolvent family of operators for fractional differential equations in a Banach space are studied.

Keywordscompactness, continuity, fractional differential equation
References: 

1. Pazy A. Semigroups of linear operators and applications to partial differential equations. New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
2. Cuthbert J. R. Z. Wahrsch. und Verw. Geb., 1971, 18, No. 1–2: 9–16. https://doi.org/10.1007/BF00538484
3. Engel K.-J., Nagel R. One-parameter semigroups for linear evolution equations. Berlin: Springer, 2000.
4. Bobylev N. A., Kim J. K., Korovin S. K., Piskarev S. Nonlinear Anal., 1998, 33, No. 5: 473–482. https://doi.org/10.1016/S0362-546X(97)00560-9
5. Piskarev S. Mat. Zam., 1988, 44, No. 1: 112–123.
6. Prüss J. Evolutionary integral equation and applications. Basel: Birkhäuser, 1993. https://doi.org/10.1007/978-3-0348-8570-6
7. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006..
8. Chen Ch., Li M. Semigroup Forum, 2010, 80: 121–142. https://doi.org/10.1007/s00233-009-9184-7
9. Peng J., Li K. J. Math. Anal. Appl., 2012, 385: 786–796. https://doi.org/10.1016/j.jmaa.2011.07.009
10. Kochubei A. N. Different. Equat., 1989, 25: 967–974.
11. Bazhlekova E. Fract. Calc. Appl. Anal., 1998, 1: 255–270.
12. Bazhlekova E. Fract. Calc. Appl. Anal., 2000, 3: 213–230.
13. Arendt W., Batty C. J. K., Hieber M., Neubrander F. Vector-valued Laplace transforms and Cauchy problems. Basel: Birkhäuser, 2011. https://doi.org/10.1007/978-3-0348-0087-7
14. Voigt J. Note Mat., 1992, 12: 259–269.
15. Lizama C. Proc. Amer. Math. Soc., 1998, 126: 3581–3587. https://doi.org/10.1090/S0002-9939-98-04594-8