The photonic Bose–Einstein condensate and stopped light in ultracold atomic gases

TitleThe photonic Bose–Einstein condensate and stopped light in ultracold atomic gases
Publication TypeJournal Article
Year of Publication2014
AuthorsSlyusarenko, Yu.V, Boichenko, NP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.06.074
Issue6
SectionPhysics
Pagination74-79
Date Published6/2014
LanguageUkrainian
Abstract

We have studied a possibility of the Bose condensate formation in a gas of photons, which are in thermodynamic equilibrium with the ideal gas of two-level Bose atoms below the degeneracy temperature. The coexistence conditions for the Bose-condensates in the atomic and photonic subsystems are found. The "avalanche" mode of condensation of photons is proposed. Such situation can be interpreted as "stopped light" in the Bose-condensate of atoms.

KeywordsBose atoms, Bose–Einstein condensate, light, photons
References: 

1. Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A. Science, 1995, 269: 198–201. https://doi.org/10.1126/science.269.5221.198
2. Bradley C. C., Sackett C. A., Tollett J. J., Hulet R. G. Phys. Rev. Lett., 1995, 75: 1687–1691. https://doi.org/10.1103/PhysRevLett.75.1687
3. Davis K. B., Mewes M.-O., Andrews M. R., van Druten J. N., Durfee D. S., Kurn D. M., Ketterle W. Phys. Rev. Lett., 1995, 75: 3969–3973. https://doi.org/10.1103/PhysRevLett.75.3969
4. Pitaevskii L., Stringari S. Bose–Einstein condensation. New York: Oxford Univ. Press, 2003.
5. Pethick C. J., Smith H. Bose–Einstein condensation in dilute gases (second edition). Cambridge: Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511802850
6. Hau L. V., Harris S. E., Dutton Z., Behroozi C. H. Nature, 1999, 397: 594–598. https://doi.org/10.1038/17561
7. Slyusarenko Y. V., Sotnikov A. G. Phys. Rev. A., 2008, 780: 053622. https://doi.org/10.1103/PhysRevA.78.053622
8. Cornell E. A. Nature, 2001, 409: 461–462. https://doi.org/10.1038/35054152
9. Phillips D. F., Fleischhauer A., Mair A., Walsworth R. L., Lukin M. D. Phys. Rev. Lett., 2001, 86: 783–786. https://doi.org/10.1103/PhysRevLett.86.783
10. Liu C., Dutton Z., Berhoozi C. H., Hau L. V. Nature, 2001, 409: 490–493. https://doi.org/10.1038/35054017
11. Slyusarenko Y. V., Sotnikov A. G. Phys. Rev. A., 2011, 83: 023601. https://doi.org/10.1103/PhysRevA.83.023601
12. Klaers J., Schmitt J., Vewinger F., Weitz M. Nature, 2010, 468: 545–548. https://doi.org/10.1038/nature09567
13. Klaers J., Schmitt J., Damm T., Dung D., Vewinger F., Weitz M. Proc. SPIE, 2013, 8600: 86000L. https://doi.org/10.1117/12.2001831
14. Kruchkov A., Slyusarenko Yu. Phys. Rev. A., 2013, 88: 013615. https://doi.org/10.1103/PhysRevA.88.013615
15. Akhiezer A. I., Peletminskii S. V. Methods of statistical physics. Oxford: Pergamon Press, 1981.