Sensitivity of Lewis Lung Carcinoma (LLC) and LLC/R9 cells to cytotoxic action exerted by murine natural killer cells and macrophages of C57BL/6 mice in vitro

TitleSensitivity of Lewis Lung Carcinoma (LLC) and LLC/R9 cells to cytotoxic action exerted by murine natural killer cells and macrophages of C57BL/6 mice in vitro
Publication TypeJournal Article
Year of Publication2014
AuthorsFedorchuk, OG, Lyon, AD, Yakshibaeva, Yu.R, Gorbik, GV, Pyaskovskaya, ON
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.06.167
Issue6
SectionMedicine
Pagination167-172
Date Published6/2014
LanguageUkrainian
Abstract

The comparative investigation of the sensitivity of primary LLC and drug resistant LLC/R9 cells to natural killer cells and macrophages of C57BL/6 intact mice is performed in vitro. It is shown that the forming of a resistance to cisplatin by LLC cells is accompanied by an increase of their sensitivity to the cytotoxic action of natural killer cells and a decrease of the susceptibility to the cytolytic activity of macrophages. High LLC/R9 cell sensitivity to the cytotoxic action of natural killer cells possibly was caused by a diminished expression of MHC class I molecules. Decreased sensitivity of resistant cells to the cytolysis by nonsensitized macrophages was associated with a high ability to undergo autophagy.

Keywordskiller cells, Lewis lung carcinoma, macrophages of mice
References: 

1 Kavetskiy R. E. Interaction of an organism and a tumor. Kyiv: Nauk. dumka, 1977 (in Russian).
2. Osinskiy S., Baupel P. Microphysiology of tumors. Kyiv: Nauk. dumka, 2009 (in Russian).
3. Aptsiauri N., Cabrera T., Garcia-Lora A. et al. Int. Rev. Cytol., 2007, 256: 139–189. https://doi.org/10.1016/S0074-7696(07)56005-5
4. Schreiber R. D., Old L. J., Smyth M. J. Science, 2011, 331: 1565–1570. https://doi.org/10.1126/science.1203486
5. Snodgrass M. J., Morahan P. S., Kaplan A. M. J. Natl. Cancer Inst., 1975, 55, No. 2: 455–462.
6. Kolesnik D. L. Biological properties of modified variant of Lewis lung carcinoma, associated with tumor angiogenesis. (Extended abstract of candidate thesis), R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine Kyiv, Ukraine, 2010 (in Ukraine).
7. Pyaskovskaya O. N., Dasyukevich O. I., Kolesnik D. L. et al. Exp. Oncol., 2007, 29, No. 3: 197–202.
8. Fedorchuk O. G., Pyaskovskaya O. M., Skivka L. M. et al. Cytokine, 2012, 57, No. 1: 81–88. https://doi.org/10.1016/j.cyto.2011.10.022
9. Fedorchuk O. G. Med. khimiia, 2012, 14: 5–10.
10. Sugimoto Y., Hirakawa Y., Tanaka N. et al. Cancer Res., 1986, 46: 5646–5648.
11. Berezhnaya N. M., Belova O. B., Vinnichuk Y. D., Tarutinov V.I. Exp. Oncol., 2009, 31, No. 4: 242–245.
12. Kiessling R., Klein E., Wigzell H. Eur. J. Immunol., 1975, 5, No. 2: 112–117. https://doi.org/10.1002/eji.1830050208
13. Pinegin B. V., Yarilin A. A., Simonova A. V. et al. The use of flow cytometry to assess the functional activity of the human immune system. Manual for laboratory doctors. Moscow, 2001 (in Russian).
14. Janeway C. A., Travers P., Walport M., Shlomchik M. Immunology: the immune system in health & disease, 5 ed. New York: Garlandpress, 2005.
15. Chen Y, McMillan-Ward E., Kong J. et al. Cell Death Differ., 2008, 15, No 1: 171–182. https://doi.org/10.1038/sj.cdd.4402233