Adsorption approach to the determination of the size and weight of humic acid molecules

TitleAdsorption approach to the determination of the size and weight of humic acid molecules
Publication TypeJournal Article
Year of Publication2014
AuthorsTarasevich, Yu.I, Tryfonova, MYu., Marynin, AI, Dolenko, SA, Malysheva, ML
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.08.109
Issue8
SectionChemistry
Pagination109-115
Date Published8/2014
LanguageRussian
Abstract

The investigation of the state of sodium humate from “Aldrich” in an aqueous solution and on solid surfaces is performed using a complex of methods. It is shown that sodium humate in an aqueous solution at neutral pH and low ionic strength is in the associated state. It is found that the substance under study contains molecules with mass of 1, 3–6, and 15 kDa. A new adsorption approach to the determination of the size and the weight of humic acid molecules is proposed. The diameter of the smallest molecule is 2.3 nm, and the largest – 9.0 nm.

Keywordsadsorption approach, humic acid molecules, size, weight
References: 

1. Ochs M., Cosovic B., Stumm W. Geochim. Cosmochim. Acta., 1994, 58, No. 2: 639–650. https://doi.org/10.1016/0016-7037(94)90494-4
2. Vermeer A. W. P., Koopal L. K. Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption, Langmuir, 1998, 14, No. 15: 4210–4216. https://doi.org/10.1021/la970836o
3. Tanaka T. Thermochimica Acta., 2012, 532: 60–64. https://doi.org/10.1016/j.tca.2011.12.004
4. Murphy E. M., Zachara J. M., Smith S. C. Environ. Sci. Technol., 1994, 28, No. 7: 1291–1299. https://doi.org/10.1021/es00056a017
5. Osterberg R., Mortensen K. Eur. Biophys. J., 1992, 21, No. 3: 163–167. https://doi.org/10.1007/BF00196759
6. Baalousha M., Motelica-Heino M., Galaup S., Coustumer P. L. Microscopy Res. and Techniq., 2005, 66, No. 6: 299–306. https://doi.org/10.1002/jemt.20173
7. Manning T. J., Bennett T., Milton D. Sci. Total Environ., 2000, 257, No 2-3: 171–176. https://doi.org/10.1016/S0048-9697(00)00517-9
8. Kawahigashi M., Sumida H., Yamamoto K. J. Colloid and Interface Sci., 2005, 284: 463–469. https://doi.org/10.1016/j.jcis.2004.10.023
9. Piccolo A. Soil. Sci., 2001, 166, No. 11: 810–832. https://doi.org/10.1097/00010694-200111000-00007
10. Baigorri B., Fuentes M., Gonzalez-Gaitano G., Garcıa-Mina J. M. J. Phys. Chem. B., 2007, 111, No. 35: 10577–10582. https://doi.org/10.1021/jp0738154
11. Tarasevich Yu. I., Dolenko S. A., Trifonova M. Yu., Alekseenko E. Yu. Kolloid. zhurn., 2013, 75, No. 2. – P. 230–236 (in Russian).
12. Tarasevich Yu. I. The structure and surface chemistry of layered silicates, Kyiv: Nauk. dumka., 1988 (in Russian).
13. Rusko Yu. A. Kaolinization and kaolin Ukrainian shield, Kyiv: Nauk. dumka, 1976 (in Russian).
14. Theng B. K. G. Formation and Properties of Clay-Polymer Complexes., Amsterdam: Elsevier Sci., 2012.