Generalized inverse operator method in the problem of the optimal controlling of linear interconnected static plants

TitleGeneralized inverse operator method in the problem of the optimal controlling of linear interconnected static plants
Publication TypeJournal Article
Year of Publication2014
AuthorsSkurikhin, VI, Gritsenko, VI, Zhiteckii, LS, Solovchuk, KYu.
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.08.057
Issue8
SectionInformation Science and Cybernetics
Pagination57-66
Date Published8/2014
LanguageRussian
Abstract

In a framework of the generalized inverse operator method, the optimal control problems for the discrete-time linear interconnected plants with arbitrary transfer matrices in the presence of unmeasurable disturbances (noises) are formally solved. The asymptotic properties of the control systems to be designed are established.

Keywordsgeneralized inverse operator method, problem of the optimal controlling
References: 

1. Zhuk K. D., Pyatenko T. G., Skurikhin V. I. Questions the synthesis of optimal control models in multiply connected automatic of systems Proceedings of the Seminar Methods of mathematical modeling and the theory of electric circuits, 1964: 3–17 (in Russian).
2. Pukhov G. E., Zhuk K. D. The synthesis of multiply connected control systems by the method of inverse operators, Kyiv: Nauk. dumka, 1966 (in Russian).
3. Lee T. G., Adams G. E., Geinz U. M. Process control using computers. Modeling and Optimization, Moscow: Sov. radio, 1972 (in Russian).
4. Katkovnik V. A. Gradient control laws in the problems of stabilization of multidimensional control systems. In Theory and methods of construction of multivariable control systems, Moscow: Nauka, 1973: 84–93 (in Russian).
5. Pukhov G. E., Khatiashvili Ts. S. Models of technological processes, Kyiv: Tekhnika, 1974 (in Russian).
6. Skurikhin V. I., Zhytetskiy L. S., Protsenko N. M. Iterative-table machines, Kyiv: Nauk. dumka, 1977 (in Russian).
7. Lyubchyk L. M. Disturbance rejection in linear discrete multivariable systems: inverse model approach. Preprints 18th IFAC World Congress (Milano, Italy, Aug. 28 – Sept. 2, 2011), Milano, 2011: 7921– 7926. https://doi.org/10.3182/20110828-6-it-1002.02121
8. Lovass-Nagy V., Miller J. R., Powers L. D. Int. J. of Control, 1976, 24, No 5: 733–739. https://doi.org/10.1080/00207177608932859
9. Petrov B. N., Krutko P. D., Popov E. P. Dokl. AN USSR, 1979, 247, No 5: 1078–1081 (in Russian).
10. Skurikhin V. I., Zhytetskiy L. S., Solovchuk K. Yu. Upravliaiuschie sistemy i mashiny, 2013, No 3: 14–29 (in Russian).
11. Fomin V. N., Fradkov A. L., Yakubovich V. A. Adaptive control of dynamic objects, Moscow: Nauka, 1981 (in Russian).
12. Kuntsevich V. M. Management under uncertainty: guaranteed results in problems of control and identification, Kyiv: Nauk. dumka, 2006 (in Russian).
13. Zhytetskiy L. S., Skurikhin V. I. Adaptive control systems with parametric and non-parametric uncertainties, Kyiv: Nauk. dumka, 2010 (in Russian).
14. Bunich A. L. Avtomatika i telemekhanika, 2000, No 6: 114–123 (in Russian).
15. Albert A. Regression, pseudoinverse and Recursive Estimation, Moscow: Nauka, 1977 (in Russian).