Regulation of phosphatidylcholine-hydrolizing phospholipase C activity under the influence of biotic stress effectors in plants

TitleRegulation of phosphatidylcholine-hydrolizing phospholipase C activity under the influence of biotic stress effectors in plants
Publication TypeJournal Article
Year of Publication2014
AuthorsPokotylo, IV, Martinec, J, Kravets, VS
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.09.134
Issue9
SectionBiochemistry
Pagination134-140
Date Published9/2014
LanguageUkrainian
Abstract

The influence of biotic stress effectors on the activity of phosphatidylcholine-hydrolizing phospholipase C (PC-PLC) in tobacco suspension cell culture and the level of PC-PLC genes expression in Arabidopsis has been demonstrated. A decrease in the level of diacylglycerol second messenger production by PC-PLC has been detected in response to the treatment with either salicylic acid or elicitors (lipopolysaccharides and benzotiadiazol). The treatment with methyl jasmonate has not influenced the activity of PC-PLC. An implication of PC-PLC to the mechanisms of biotic stress effectors action has been disclosed on the levels of changes to enzymatic activity of PC-PLC and gene expression of PC-PLC.

Keywordsbiotic stress, phospholipase C, plants
References: 

1. Wirthmueller L., Maqbool A., Banfield M. J. Nat Rev Micro, 2013, 11, No 11: 761–776. https://doi.org/10.1038/nrmicro3118
2. Canonne J., Froidure-Nicolas S., Rivas S. Plant Signal. & Behav., 2011, 1, No 6: 13–18. https://doi.org/10.4161/psb.6.1.14037
3. Pokotylo I., Pejchar P., Potock´y M. et al. Prog. Lipid Res., 2013, 1, No 52: 62–79. https://doi.org/10.1016/j.plipres.2012.09.001
4. Raho N., Ramirez L., Lanteri M. L. et al. J. Plant Phys., 2011, 6, No 168: 534–539. https://doi.org/10.1016/j.jplph.2010.09.004
5. Monaghan J., Zipfel C. Curr. Opin. Plant Biol., 2012, 4, No 15: 349–357. https://doi.org/10.1016/j.pbi.2012.05.006
6. Zhao J., Devaiah S. P., Wang C. et al. New Phytologist, 2013, 1, No 199: 228–240. https://doi.org/10.1111/nph.12256
7. Pinosa F., Buhot N., Kwaaitaal M. et al. Plant Phys., 2013, 2, No 163: 896–906. https://doi.org/10.1104/pp.113.223503
8. Zhang Y., Zhu H., Zhang Q. et al. Plant Cell Online, 2009, 8, No 21: 2357–2377. https://doi.org/10.1105/tpc.108.062992
9. Rainteau D., Humbert L., Delage E. et al. PLoS ONE, 2012, 7, No 7: e41985. https://doi.org/10.1371/journal.pone.0041985
10. Profotova B., Burketova L., Novotna Z. et al. Plant Phys. and Biochem., 2006, 2./3, No 44: 143–151. https://doi.org/10.1016/j.plaphy.2006.02.003
11. Campos L., Granell P., Tarraga S. et al. Plant Phys. and Biochem., 2014, No 77: 35–43.
12. Plett J. M., Khachane A., Ouassou M. et al. New Phytologist., 2014, 1, No 202: 270–286. https://doi.org/10.1111/nph.12655
13. Van der Does D., Leon-Reyes A., Koornneef A. et al. Plant Cell Online, 2013, 2, No 25: 744–761. https://doi.org/10.1105/tpc.112.108548
14. Erbs G., Newman M.-A. Lipopolysaccharide and its interactions with plants. In Bacterial Lipopolysaccharides. Ed. by Y. A. Knirel, M. A. Valvano, Vienna: Springer, 2011: 417–433. https://doi.org/10.1007/978-3-7091-0733-1_14
15. Lee B., Park Y. S., Yi H. S., Ryu C. M. Plant Pathol. J., 2013, 3, No 29: 350–355. https://doi.org/10.5423/PPJ.NT.02.2013.0018