Excitation-inhibition of stomach smooth muscles by the nano-sized titanium dioxide materials

TitleExcitation-inhibition of stomach smooth muscles by the nano-sized titanium dioxide materials
Publication TypeJournal Article
Year of Publication2015
AuthorsTsymbalyuk, OV, Naumenko, AM, Nyporko, AYu., Davidovska, TL, Skryshevsky, VA
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
Date Published10/2015

The aim of our work consisted in the investigation of the effects of TiO2 nanoparticles (average size of 21 ± 5 nm) on the contractile activity of circular smooth muscles from rat's stomach. The cumulative increase in the concentration of TiO2 (10−6–10−3 mg/ml) is accompanied by a dose-dependent inhibition of spontaneous contractions. When using TiO2 concentrations 10−3, 2.5·10−2, and 5·10−2 mg/ml, the significant increase, of acetylcholine- and K+-induced contractions are observed. The activation of acetylcholine-induced contractions is essentially inhibited by D-600. Vice versa, the atropine presence didn't eliminate the TiO2-stimulated activation of high- K+-induced contractions. Nanoparticles didn't affect the contractions caused by the release of Ca2+ from sarcoplasmic reticulum, but their effects are essentially eliminated via the previous inhibition of the mitochondria function by sodium azide.

Keywordsgastric smooth muscles, spontaneous and induced contractions, TiO2 nanoparticles
  1. Warheit D. B. Toxicol. Lett., 2013, 220, No 2: 193–204. https://doi.org/10.1016/j.toxlet.2013.04.002
  2. Giovanni M., Tay C. Y., Setyawati M. I., Xie J., Ong C. N., Fan R., Yue J., Zhang L., Leong D. T. Environ. Toxicol., 2014,
  3. Oberd¨orster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. Inhal. Toxicol., 2004, 16, No 6–7: 437–445. https://doi.org/10.1080/08958370490439597
  4. Wang J., Chen C., Liu Y., Jiao F., Li W., Lao F., Li Y., Li B., Ge C., Zhou G., Gao Y., Zhao Y., Chai Z. Toxicol. Lett., 2008, 183, No 1–3: 72–80. https://doi.org/10.1016/j.toxlet.2008.10.001
  5. Meldrum B. S. J. Nutr., 2000, 130, No 4: 1007S–1015S.
  6. Okubo Y., Sekiya H., Namiki S. Proc. Nat. Acad. Sci., 2010, 107, No 14, https://doi.org/10.1073/pnas.0913154107
  7. Shi H., Magaye R., Castranova V., Zhao J. Part. Fibre Toxicol., 2013, 10, No 15.
  8. Cho W., Kang B., Lee J. K., Jeong J., Che J. H., Seok S. H. Toxicol., 2013, 10, No 9: 2–9.
  9. Burdyga Th. V., Kosterin S. A. Gen. Physiol. Biophys., 1991, 10: 589–598.
  10. Nasibian L. S., Filippov I. B. Fiziol. Zh., 2014, 60, No 5: 62–72 (in Ukrainian).
  11. Ward S. M., McLaren G. J., Sanders K. M. J. Physiol., 2006, 573, No 1: 147–159. https://doi.org/10.1113/jphysiol.2006.105189
  12. Horowitz B. M., Ward S. M., Sanders K. M. Annu. Rev. Physiol., 1999, 61: 19–43. https://doi.org/10.1146/annurev.physiol.61.1.19
  13. Ehlert F. J., Pak K. J., Griffin M. T. Handb. Exp. Pharmacol., 2012, 208: 343–374. https://doi.org/10.1007/978-3-642-23274-9_15