Influence of nitrogen and oxygen heteroatoms on catalytic activity of carbon nanoporous materials of KAU and SCN types in the model reaction of benzoyl peroxide decomposition

TitleInfluence of nitrogen and oxygen heteroatoms on catalytic activity of carbon nanoporous materials of KAU and SCN types in the model reaction of benzoyl peroxide decomposition
Publication TypeJournal Article
Year of Publication2015
AuthorsGalyarnyk, DM, Bakalinska, OM, Kartel, MT
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.11.075
Issue11
SectionChemistry
Pagination75-81
Date Published11/2015
LanguageUkrainian
Abstract

The catalytic activity of carbon nanoporous materials of SCN and KAU type, their oxidized and nitrogen-containing modified forms, enzyme catalase in the model reaction of benzoyl peroxide decomposition in ethyl acetate solutions are determined by the calculation of the Michaelis constants according to the kinetics of substrate decomposition. It is found that the catalytic activity of studied samples correlates with surface basicity and the presence of quaternary nitrogen groups in the structure. The doping by nitrogen and oxygen heteroatoms increases and decreases, respectively, their catalytic activity.

Keywordsbenzoyl peroxide, carbon nanomaterials, catalytic activity, heteroatom, Michaelis constant, nitrogen-containing carbon, non-aqueous media
References: 
  1. Glevatska K. V., Bakalinska O. M., Kartel M.T. Dopov. Nac. akad. nauk Ukr., 2008, No 8: 126–131 (in Ukrainian).
  2. Krieger N., Bhatnagar T., Baratti J. C., Baron A. M., de Lima V. M., Mitchell D. Food Technol. Biotechnol, 2004, 42, No 4: 279–286.
  3. Menendez-Diaz J. A., Martln-Gullon I. Activated carbon surfaces in environmental remediation (Interface science and technology series, 7), Ed. by T. Bandosz, Amsterdam: Elsevier, 2006: 1–47. https://doi.org/10.1016/S1573-4285(06)80010-4
  4. Okotrub A. V., Bulusheva L. G., Kudashov A. G., Belavin V. V., Vyalikh D. V., Molodtsov S. L. Appl. Phys. A: Mater., 2009, 94, No 3: 437–443. https://doi.org/10.1007/s00339-008-4914-3
  5. Badzian A., Badzian T., Breval E., Piotrowski A. Thin Solid Films, 2001, 398: 170–174. https://doi.org/10.1016/S0040-6090(01)01461-4
  6. Shao Y., Sui J., Yina G., Gao Y. Appl. Catal., 2008, 79: P. 89–99. https://doi.org/10.1016/j.apcatb.2007.09.047
  7. Shao Y. Y., Wang X. Q., Engelhard M., Wang C.M., Dai S., Liu J., Yang Z.G., Lin Y.H. J. Power Sources, 2010, 195, No 13: 4375–4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
  8. Cui T. X., Lv R. T., Huang Z. H., Zhu H. W., Zhang J., Li Z., Yi J., Feiyu K., Kunlin W. Carbon, 2011, 49, No 15: 5022–5028. https://doi.org/10.1016/j.carbon.2011.07.019
  9. Chettya R., Kundua S., Xiaa W., Brona M., Schuhmannb W., Chirilad V., Blandl W., Reinecke T., Muhler M. Electrochim. Acta, 2009, 54: 4208–4215. https://doi.org/10.1016/j.electacta.2009.02.073
  10. Chen P., Xiao T. Y., Li H. H., Yang J. J., Wang Z., Yao H. B., Yu S. H. ACS Nano, 2012, 6, No 1: 712–719. https://doi.org/10.1021/nn204191x
  11. Podyacheva O.Yu., Izmagilov Z. R. Catal. Today, 2015, 249: 12–22. https://doi.org/10.1016/j.cattod.2014.10.033
  12. Glevatska K. V., Bakalinska O. M., Kartel M.T. Scientific notes NaUKMA, Chem. Sci. and Technol., 2008, 79: 19–23 (in Ukrainian).
  13. Strelko V. V., Nemoshkalenko V. V., Kartel N. T., Medvedev S. L. Adsorpt. and Adsorb., 1983, 11: 76–80 (in Russian).
  14. Bortnik N. V., Galyarnik D. M., Kulyk T. V., Palyanytsya B. B., Bakalinska O. M., Kartel M. T. 34th Intern. Conf. on Vacuum Microbalance and Thermoanalytical Techniques (ICVMTT 34) and Intern. Conf. "Modern Problems of Surface Chemistry", Kyiv, 2014: 29.