Estimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method

TitleEstimation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes by the spin probe method
Publication TypeJournal Article
Year of Publication2015
AuthorsKartel, MT, Ivanov, LV, Lyapunov, OM, Nardid, OA, Okotrub, AV, Kirilyuk, IA, Cherkashina, Ya.O
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.03.114
Issue3
SectionChemistry
Pagination114-121
Date Published3/2015
LanguageRussian
Abstract

Using the method of spin probes, we have evaluated the microviscosity of erythrocyte membranes in the presence of carbon nanotubes of different structures for short (4 h) and long (24 h) incubation periods. According to the EPR spectra of lipophilic iminoxyl radicals, the correlation time of rotational diffusion probes in membranes is determined to be proportional to the viscosity of the lipid layer. Upon the prolonged incubation, all nanotubes are characterized by the ability to increase the microviscosity of erythrocyte membranes by 1.5–2 times. The ability of carbon nanotubes to affect the erythrocyte membrane microviscosity depends on the tube size and the chemistry of surfaces. The greatest effect belongs to hydrophilic (oxidized) multiwalled nanotubes. There is a less impact from the hydrophobic multiwalled tubes and their fragments, and the single-walled nanotubes are characterized by the weakest effect on erythrocyte membranes among the investigated series of carbon nanoparticles.

Keywordscarbon nanotubes, erythrocyte membranes, microviscosity, spin probe method
References: 

1. Porter A. E., Gass M., Muller K. et al. Nature Nanotechnol., 2007, 2, No 11: 713–717. https://doi.org/10.1038/nnano.2007.347
2. Liu Z., Chen K., Davis C. et al. Cancer Res., 2008, 68, No 16: 6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468
3. Liu Z., Fan A. C., Rakhra K. et al. Angew. Chem., 2009, 41, No 48: 7668–7672. https://doi.org/10.1002/anie.200902612
4. Likhtenshtein G. I. The method of spin labels in molecular biology, Moscow: Nauka, 1974 (in Russian).
5. The method of spin labels. Theory and application. Ed by Berliner L. Moscow: Mir, 1979 (in Russian).
6. Kartel N. T., Grishchenko V. I., Chernykh V. P et al. Dopov. Nac. akad. nauk Ukr., 2009, 8: 127–133 (in Russian).
7. Ivanov L. V., Kartel N. T. Dopov. Nac. akad. nauk Ukr., 2012, 5: 139–145 (in Russian).
8. Rozantsev E. G. Free radicals iminoxyl. – Moscow: Khimiia, 1970 (in Russian).
9. Bulusheva L. G., Okotrub A. V., Lavskaya Yu. V. et al. Phys. Status Solidi B., 2009, 246, No 11./12.: 2637–2640.
10. Novopashin S. A., Serebryakova M. A., Sokolov R. E. et al. Nanotechnol. in Russia, 2013, 8, No 1./2.: 64–68.
11. Bulusheva L. G., Okotrub A. V., Asanov I. P. et al. Phys. Chem. B., 2001, 105, No 21: 4853–4859. https://doi.org/10.1021/jp010056v