Title | Comparison theorem for the support functions of hypersurfaces |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | Borisenko, AA, Drach, KD |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2015.03.011 |
Issue | 3 |
Section | Mathematics |
Pagination | 11-16 |
Date Published | 3/2015 |
Language | Russian |
Abstract | For a convex domain $D$ that is enclosed by the hypersurface $\partial D$ of bounded normal curvature, we prove an angle comparison theorem for the angles between $\partial D$ and geodesic rays starting from some fixed point in $D$, and the corresponding angles for hypersurfaces of constant normal curvature. We obtain a comparison theorem for the support functions of such surfaces. As a corollary, we present a proof of Blaschke’s rolling theorem.
|
Keywords | Blaschke’s rolling theorem, hypersurface, support functions |
1. Bliashke V. Circle and ball, Moscow: Nauka, 1967 (in Russian).
2. Karcher H. Math. Ann., 1968, 177: 122–132. https://doi.org/10.1007/BF01350788
3. Milka A. D. Ukr. heom. sb., 1970, 8: 95–102 (in Russian).
4. Howard R. Manuscripta Math.,1999, 99, No 4: 471–483. https://doi.org/10.1007/s002290050186
5. Buraho Yu. D., Zalhaller V. A. Geometric inequalities, Leningrad: Nauka, 1980 (in Russian).
6. Borisenko A. A., Drach K. D. Mat. sb., 2013, 204, No 11: 21–40 (in Russian).
7. Borisenko A. A. Different. Geom. and its Appl., 2002, 17: 111–121.
8. Petersen P. Riemannian geometry (Graduate texts in mathematics; Vol. 171), New York: Springer, 1998.
9. Gerhardt C. Indiana Univ. Math. J., 2000, 49, No 3: 1125–1153. https://doi.org/10.1512/iumj.2000.49.1861
10. Gerhardt C. Pure and Appl. Math. Quart. Leon Simon spec. iss. pt. I., 2007, 3, No 2: 417–449.
11. Gerhardt C. Minkowski type problems for convex hypersurfaces in hyperbolic space, http://arxiv.org/pdf/math/0602597.pdf.
12. Parkkonen J., Paulin F. J. Geom. Anal., 2012, 22, No 3: 621–632. https://doi.org/10.1007/s12220-010-9185-5