Title | The FD-method for an eigenvalue problem in a case where the base problem has eigenvalues of arbitrary multiplicities in a Hilbert space |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | Makarov, VL, Romaniuk, NM |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2015.05.026 |
Issue | 5 |
Section | Mathematics |
Pagination | 26-34 |
Date Published | 5/2015 |
Language | Ukrainian |
Abstract | A new algorithm for the eigenvalue problems for linear self-adjont operators in the form of sum $A+B$ with a discrete spectrum in a Hilbert space is proposed and justified. The algorithm is based on the approximation of $B$ by an operator $\overline{B}$ such that the eigenvalue problem for $A+\overline{B}$ is computationally simpler than that for $A+B$. The operator $A+\overline{B}$ is allowed to have multiple eigenvalues. The algorithm for this eigenvalue problem is based on the homotopy idea. It provides the super-exponential convergence rate, i. e. the rate faster than the convergence rate of a geometrical progression with the ratio, which is inversely proportional to the index of the eigenvalue under consideration. The eigenpairs can be computed in parallel for all prescribed indices. We supply a numerical example which supports the developed theory.
|
Keywords | eigenvalue problem, functional-discrete method, Hilbert space, multiple eigenvalues, super-exponentially convergent algorithm |
References:
- Akulenko L.D., Nesterov S.V. High-precision methods in eigenvalue problems and their applications, Boca
- Raton: Chapman&Hall/CRC, 2005.
- Pryce J. Numerical solution of Sturm–Liouville problems, Oxford: Oxford Univ. Press, 1993.
- Rellich F. Math. Ann., 1937, 113, Mitt. I: 600–619 (in German).
- Rellich F. Math. Ann., 1937, 113, Mitt. II: 677–685 (in German).
- Rellich F. Math. Ann., 1939, 116, Mitt. III: 555–570 (in German).
- Armstrong M.A. Basic topology, Berlin: Springer, 1983. https://doi.org/10.1007/978-1-4757-1793-8
- Allgower E., Georg K. Introduction to numerical continuation methods, Colorado: Colorado State University, 1990. https://doi.org/10.1007/978-3-642-61257-2
- Makarov V. L. Dokl. Akad. Nauk. SSSR, 1991, 320, No. 1: 34–39 (in Russian).
- Bandyrskii B. I., Makarov V. L., Ukhanev O. L. J. Comp. Appl. Math., 2000, 85, No 1: 1–60 (in Ukrainian).
- Gavrilyuk I.P., Makarov V. L., Popov A.M. J. Numer. Appl. Math., 2010, 100, No 1: 60–81.
- Bandyrskii B. I., Gavrilyuk I.P., Lazurchak I. I., Makarov V. L. Comput. Methods Appl. Math., 2005, 5, No 4: 362–386. https://doi.org/10.2478/cmam-2005-0017
- Gavrilyuk I.P., Makarov V. L. Super-exponentially convergent parallel algorithm for eigenvalue problems in Hilbert spaces: Proc. of the Intern. Conf. "DETA 2009", Kaunas: Technologija, 2009: 86–92.
- Makarov V. L., Vinokur V.V. J. Math. Sci., 1995, 77, No 5: 3399–3405. https://doi.org/10.1007/BF02367984