Synthesis of NaY(MoO4)2 single crystals from molybdate-fluoride melts

TitleSynthesis of NaY(MoO4)2 single crystals from molybdate-fluoride melts
Publication TypeJournal Article
Year of Publication2015
AuthorsTerebilenko, KV, Kyselov, DV, Odynets, IV, Slobodyanik, MS
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.06.123
Issue6
SectionChemistry
Pagination123-129
Date Published6/2015
LanguageUkrainian
Abstract

The crystallization trends in the molten system Na−Y−Mo−O−F have been studied, and two crystallization fields of the compound NaY(MoO4)2 and NaY(MoO4)2+Na5Y(MoO4)4 mixture are defined. The synthesis of NaY(MoO4)2 in molybdate-fluoride melts at the YF3 content 10% (mol) and ratios Na/F = 1.0−1.2; Na/Mo = 0.5−0.7 was performed for the first time. The congruent melting point was found at 549 ºC. Interpretation of the results was carried out, by using infrared spectroscopy, X-ray powder diffraction, and DTA analysis.

Keywordscongruent melting, double molybdate, fluoride, melt
References: 
  1. Phuruangrata A., Thongtemb T., Thongtema S. J. Alloys Comp., 2009, 481: 568–572. https://doi.org/10.1016/j.jallcom.2009.03.037
  2. Spassky D., Ivanov S., Kitaeva I., Kolobanov V., Mikhailin V., Ivleva L., Voronina I. Phys. Stat. Sol. (C), 2005, 2: 65–72. https://doi.org/10.1002/pssc.200460112
  3. Mazzocchia C., Aboumrad C., Diagne C., Tempesti E., Herrmann J.M., Thomas G. Catal. Lett., 1991, 10: 181–187. https://doi.org/10.1007/BF00772070
  4. Cross L. E., Fouskova A., Cummins S. E. Phys. Rev. Lett., 1968, 21: 812–813. https://doi.org/10.1103/PhysRevLett.21.812
  5. Keve E.T., Abrahams S.C., Nassau K., Glass A.M. Sol. State Commun., 1970, 8, No 19: 1517–1520. https://doi.org/10.1016/0038-1098(70)90598-3
  6. Stedman N. J., Cheetham A.K., Battle P.D. J. Mater. Chem., 1994, 4: 707–711. https://doi.org/10.1039/jm9940400707
  7. Deng Y., Yi Sh., Wang Y., Xian J. Opt. Mater., 2014, 36, No 8: 1378–1383. https://doi.org/10.1016/j.optmat.2014.03.036
  8. Hu Y., Zhuang W., Ye H., Wang D., Zhang S., Huang X. J. Alloys Comp., 2005, 390: 226–229. https://doi.org/10.1016/j.jallcom.2004.07.063
  9. Liu H., Zhang K., Pang L. et al. Optoelectron. Lett., 2014, 10, No 6: 451–454. https://doi.org/10.1007/s11801-014-4162-z
  10. Li X., Lin Zh., Zhang L., Wang G. Mater. Res. Innov., 2006, 10, No 2: 207–214. https://doi.org/10.1179/mri.2006.10.2.207
  11. Nagorniy P.G., Korniyenko Z. I., Boyko R. S., Gorodilova N.O., Baumer V.M., Slobodyanik M. S. Dopov. Nac. akad. nauk Ukr., 2007, No. 9: 120–125 (in Ukrainian).
  12. Iefremov V., Trunov V. J. Inorgan. Chem., 1971, 16, No 7: 2026–2027 (in Russian).
  13. Terebilenko K.V., Slobodyanik M. S., Vorona I.P. Bioresours. Nat. Res., 2012, 4, No 5/6: 32–37 (in Ukrainian).
  14. Yang H.K., Choi B.C., Jeong J.H. Phys. J. Korean Phys. Soc., 2009, 54: 720–724. https://doi.org/10.3938/jkps.54.720
  15. Volkov V., Cascales C., Kling A., Zaldo C. Chem. Mater., 2005, 17: 291–300. https://doi.org/10.1021/cm049095k