The generalized integral Fourier transform

TitleThe generalized integral Fourier transform
Publication TypeJournal Article
Year of Publication2015
AuthorsVirchenko, NO, Chetvertak, MO
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.08.007
Issue8
SectionMathematics
Pagination7-12
Date Published8/2015
LanguageUkrainian
Abstract
The generalized integral Fourier transform \begin{gather*}
\widetilde{f}(\alpha)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}
f(x)e^{i{\alpha}x}{_{1}\Phi^{\tau,\beta}_{1}}(a;c;-r({\alpha}x))\,dx,
\end{gather*}
where $\rm{Re}\,\it{c}> \rm{Re}\,\it{a}>0$, $ ({\tau,\beta})\subset R $, $ \tau-\beta<1$, $r>0$, and  ${{_{1}\Phi}^{\tau,\beta}_{1}}(\ldots )$ is the $(\tau,\beta)$-confluent hypergeometric function, is introduced. The inversion formula of this integral transform is proved. The basic properties of a new integral Fourier transform and some examples are given.
Keywordsconfluent hypergeometric function, Fourier’ integral transform, generalized integral transform
References: 
  1. Kilbas A.A., Saigo M. H-transforms, London: Chapman and Hall, CRC, 2004. https://doi.org/10.1201/9780203487372
  2. Virchenko N., Kalla S. L., Al-Zamel A. Integral Transforms and Special Functions, 2001, 12, No 1: 89–100. https://doi.org/10.1080/10652460108819336
  3. Virchenko N. Fract. Calculus and Appl. Anal., 2006, 9, No 2: 101–108.
  4. Wright E.M. Proc. Lond. Math. Soc., 1935, 38: 257–270. https://doi.org/10.1112/plms/s2-38.1.257
  5. Sneddon I.N. Fourier Transforms, New York: McGraw-Hill, 1951.
  6. Bateman H., Erdelyi A. Higher Trancendental Functions, New York: McGraw-Hill, 1953, Vol. 1.
  7. Virchenko N.O. The generalized integral transforms, Kyiv: Zadruga, 2013 (in Ukrainan).