Ab initio modeling of the amorphization process in a Fe−Zr system

TitleAb initio modeling of the amorphization process in a Fe−Zr system
Publication TypeJournal Article
Year of Publication2015
AuthorsPlyushchay, IV, Makara, VA, Plyushchay, AI, Volkova, TV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.08.084
Issue8
SectionMaterials Science
Pagination84-88
Date Published8/2015
LanguageUkrainian
Abstract

Ab initio molecular dynamics simulations of the amorphization process in a Fe−Zr system have been presented. The atomic positions in the Fe29Zr3 supercell are modeled by simulating the annealing by the density functional theory in the generalized gradient approximation. Changes in the density of electronic states of the Fe29Zr3 supercell under crystalline-liquid-amorphous phase transitions are discussed. The most marked difference between the electronic spectrum of the liquid and amorphous phases is a pseudogap at the Fermi level, which is consistent with the Nagel–Tauc electronic criterion of amorphous metallic alloy thermal stability.

Keywordsamorphous phase, electronic structure, iron, molecular dynamics, zirconium
References: 
  1. McDeavitt S.M., Abraham D.P., Park J.Y., Keiser D.D. JOM, 1997, 49: 29–32. https://doi.org/10.1007/BF02914763
  2. McDeavitt S.M., Abraham D.P., Park J.Y. J. Nucl. Mater., 1998, 257: 21–34. https://doi.org/10.1016/S0022-3115(98)00433-4
  3. Granovsky M. S., Arias D. J. Nucl. Mater., 1996, 229: 29–35. https://doi.org/10.1016/0022-3115(95)00207-3
  4. Keiser D.D., Petri M.C. J. Nucl. Mater., 1996, 240: 51–61. https://doi.org/10.1016/S0022-3115(96)00476-X
  5. Stein F., Sauthoff G., Palm M. J. Phase Equilib., 2002, 23, No 6: 480–494. https://doi.org/10.1361/105497102770331172
  6. Abrosimova G.Ye., Aronin A. S. Fizika tverdogo tela, 1998, 40, No 10: 1768–1772 (in Russian).
  7. Gonze X., Amadon B. et. al. Comput. Phys. Com., 2009, 180: 2582–2615. https://doi.org/10.1016/j.cpc.2009.07.007
  8. Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  9. http://www.abinit.org/.
  10. Schlegel H.B. J. Comput. Chem., 1982, 3: 214–218. https://doi.org/10.1002/jcc.540030212
  11. Ashok K.V., Modak P., Svane A., Christensen N. E. Phys. Rev. B., 2011, 83: 134205. https://doi.org/10.1103/PhysRevB.83.134205
  12. Nagel S.R., Fisher G.B., Tauc G., Bardley B.G. Phys. Rev. B., 1976, 13, No 8: 3284–3296. https://doi.org/10.1103/PhysRevB.13.3284