About Lyapunov characteristic indices

TitleAbout Lyapunov characteristic indices
Publication TypeJournal Article
Year of Publication2015
AuthorsNikitina, NV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.08.064
Issue8
SectionMechanics
Pagination64-71
Date Published8/2015
LanguageRussian
Abstract

An approach to finding the Lyapunov characteristic indices is presented for the tasks of chaotic motions. The approach is based on the analysis of the bifurcations of points of a trajectory.

Keywordsbifurcation, nonlinear system, orbital loss of stability, strange attractor
References: 
  1. Neimark Yu. I., Landa P. S. Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992. https://doi.org/10.1007/978-94-011-2596-3
  2. Anishchenko V. S. Complex Oschillations in Simple Systems, Moscow: Nauka, 1990 (in Russian).
  3. Benettin G., Galgani I., Strelcyn J.M. Phys. Rev. A., 1976, 14, No 6: 2338–2345. https://doi.org/10.1103/PhysRevA.14.2338
  4. Shilnikov L.P., Shilnikov A. L., Turaev D.V., Chua L.O. Methods of Qualitative Theory in Nonlinear Dynamics. Part I., Singapore: World Scientific, 1998. https://doi.org/10.1142/9789812798596
  5. Leonov G.A. Strange Attractors and Classical Stability Theory, St.-Petersburg: University Press, 2008.
  6. Martynyuk A.A., Nikitina N.V. Int. Appl. Mech., 2015, 51, No 2: 540–541. https://doi.org/10.1007/s10778-015-0687-5
  7. Martynyuk A.A., Nikitina N.V. Nonlinear Oscillations, 2014, 17, No 2: 268–280.