Title | The cladistic analysis of serine/threonine protein kinase KIN10 and peculiarities of its an expression in different organs of Arabidopsis thaliana |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Krasnoperova, EE, Isayenkov, SV, Karpov, PA, Yemets, AI, Blume, Ya.B |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2016.01.081 |
Issue | 1 |
Section | Biology |
Pagination | 81-91 |
Date Published | 1/2016 |
Language | Ukrainian |
Abstract | The cladistic analysis and the phylogenetic tree construction of the closest homologs of protein kinase KIN10 are performed. The obtained results have shown the membership of KIN10 and its two closest homologs in plants (KIN11 (P92958) and Akin11 (Q9FLZ3)) to the unique subfamily of protein kinases SnRK1. In addition, the expression level of KIN10 gene in different plant organs are characterized. The highest level of KIN10 transcripts is observed in the green photosynthetic part of the plant, where KIN10 protein kinase regulates the biosynthetic and signaling processes. |
Keywords | cladistic analysis, closest homologs, gene expression, KIN10, phylogenetic tree, serine-threonine protein kinases |
References:
- Mohannath G., Jackel J. N., Lee Y. H., Buchmann C., Wang H., Patil V., Adams A. K., Bisar D. M. PLoS One, 2014, 9, No 1: e87592. doi: https://doi.org/10.1371/journal.pone.0087592, PMid:24498147 PMCid:PMC3907550
- Halford N. G., Hey S., Jhurreea D., Laurie S., McKibbin R. S., Paul M., Zhang Y. J. Exp. Bot., 2003, 54: 467–475. doi: https://doi.org/10.1093/jxb/erg038, PMid:12508057
- Halford N. G., Hardie D. G. Plant Mol. Biol., 1998, 37: 735–748. doi: https://doi.org/10.1023/A:1006024231305, PMid:9678569
- Son S., Oh C.J., An C.S. Plant Pathol. J., 2014, 30, Iss. 3: 269–278. doi: https://doi.org/10.5423/PPJ.OA.06.2014.0061, PMid:25289013 PMCid:PMC4181108
- Baena-González E., Sheen J. Trends Plant Sci., 2008, 9: 474–482. doi: https://doi.org/10.1016/j.tplants.2008.06.006, PMid:18701338 PMCid:PMC3075853
- Lawlor D. W., Paul M. J. Front. Plant Sci., 2014, 5: 418–432. doi: https://doi.org/10.3389/fpls.2014.00418, PMid:25202319 PMCid:PMC4142875
- Nunes C., O'Hara L. E., Primavesi L. F., Delatte T. L., Schluepmann H., Somsen G. W., Silva A. B., Fevereiro P. S., Wingler A., Paul M. J. Plant Physiol., 2013, 162, No 3: 1720–1732. doi: https://doi.org/10.1104/pp.113.220657, PMid:23735508 PMCid:PMC3707538
- Jeong E.-Y., Seo P. J., Woo J. C., Park C.-M. BMC Plant Biol., 2015, 15, No 1: 110–123. doi: https://doi.org/10.1186/s12870-015-0503-8, PMid:25929516 PMCid:PMC4416337
- Fragoso S., Espíndola L., Páez-Valencia J., Gamboa A., Camacho Y., Martínez-Barajas E., Coello P. Plant Physiol., 2009, 149, No 4: 1906–1916. doi: https://doi.org/10.1104/pp.108.133298, PMid:19211700 PMCid:PMC2663738
- Karpov P. A., Nadezhdina E. S., Yemets A. I., Blume Ya. B. Moscow Univ. Biol. Sci. Bull., 2010, 65: 213–216. doi: https://doi.org/10.3103/S0096392510040267
- Kjaersgârd I. V., Jespersen H. M., Rasmussen S. K., Welinder K. G. Plant Mol. Biol., 1997, 33, No 4: 699–708. doi: https://doi.org/10.1023/A:1005707813801, PMid:9132061
- Sato S., Kaneko T., Kotani H., Nakamura Y., Asamizu E., Miyajima N., Tabata S. DNA Res., 1998, 5: 41–54. doi: https://doi.org/10.1093/dnares/5.1.41, PMid:9628582
- Littler D. R., Walker J. R., Davis T., Wybenga-Groot L. E., Finerty PJ. Jr., Newman E., Mackenzie F., Dhe-Paganon S. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2010, 66: 143–151. doi: https://doi.org/10.1107/S1744309109052543, PMid:20124709 PMCid:PMC2815679
- Bright N. J., Carling D., Thornton C. J. Biol. Chem., 2008, 22: 14946–14954. doi: https://doi.org/10.1074/jbc.M710381200, PMid:18339622 PMCid:PMC3258900
- Matenia D., Mandelkow E. M. Trends Biochem. Sci., 2009: 34: 332–342. doi: https://doi.org/10.1016/j.tibs.2009.03.008, PMid:19559622