On estimations of the measure of the image of a ball under lower Q-homeomorphisms

TitleOn estimations of the measure of the image of a ball under lower Q-homeomorphisms
Publication TypeJournal Article
Year of Publication2016
AuthorsSalimov, RR
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.01.019
Issue1
SectionMathematics
Pagination19-25
Date Published1/2016
LanguageRussian
Abstract
We consider the lower $Q$-homeomorphisms with respect to $p$-modulus for $p\geqslant n$. For such classes of mappings, we establish an upper estimate of the measure of the image of balls and, as a consequence, obtain one analog of the known Ikoma–Schwartz lemma. The present estimate is a far-reaching generalization of the well-known Lavrent'ev result on the estimate of the area of the image of a disk under quasiconformal mappings. We give also the corresponding applications of these results to the Orlicz–Sobolev classes $W^{1,\varphi}_{\rm loc}$ in $\mathbb{R}^{n}$, $n\geqslant 3$, under a condition of the Calderon type on $\varphi$ and, in particular, to the Sobolev classes $W_{\rm loc}^{1,p}$ with $p>n-1$. The constructed examples of mappings demonstrate a precision of the obtained results.
Keywordslower Q-homeomorphism, mappings with finite distortion, Orlicz space, Orlicz-Sobolev classes, p-modulus of a family of surfaces
References: 
  1. Iwaniec T., Sverák V. Proc. Amer. Math. Soc., 1993, 118: 181–188. doi: https://doi.org/10.1090/S0002-9939-1993-1160301-5
  2. Iwaniec T., Martin G. Geometrical Function Theory and Non-Linear Analysis, Oxford: Clarendon Press, 2001.
  3. Krasnoselskii M. A., Rutickii J. B. Convex functions and Orlicz spaces, Moscow: Fizmatgiz, 1958 (in Russian).
  4. Maz'ya V. G. Sobolev spaces, Leningrad: Izd-vo Leningr. Univ., 1985 (in Russian).
  5. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, New York etc.: Springer, 2009. PMid:19385345
  6. Gehring F. W. Trans. Amer. Math. Soc., 1962, 103: 353–393. doi: https://doi.org/10.1090/S0002-9947-1962-0139735-8
  7. Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevost'yanov E. A. Algebra i Analiz, 2013, 25, No 6: 50–102 (in Russian).
  8. Salimov R. Algebra i Analiz, 2014, 26, No 6: 143–171 (in Russian).
  9. Ryazanov V., Salimov R., Srebro U., Yakubov E. Contemp. Math., 2013, 591: 211–242. doi: https://doi.org/10.1090/conm/591/11839
  10. Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R. Algebra i Analiz, 2013, 25, No 4: 101–124 (in Russian).
  11. Lavrent'ev, M. A., The variational method in boundary-value problems for systems of equations of elliptic type, Moscow: Izd-vo AN SSSR, 1962 (in Russian).
  12. Kruglikov V. I. Mat. Sb., 1986, 130, No 2: 185–206 (in Russian).
  13. Ikoma K. Nagoya Math. J., 1965, 25: 175–203. doi: https://doi.org/10.1017/S0027763000011521