To some questions of a polynomial interpolation in Euclidean spaces

TitleTo some questions of a polynomial interpolation in Euclidean spaces
Publication TypeJournal Article
Year of Publication2016
AuthorsKashpur, OF, Khlobystov, VV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.10.010
Issue10
SectionMathematics
Pagination10-14
Date Published10/2016
LanguageUkrainian
Abstract

The conditions of invariant solvability and uniqueness of a solution of the interpolation problem for a many-variable
function under the uncertainty are obtained.

KeywordsEuclidean space, Hilbert space, interpolation polynomial, invariance of a solution, operator
References: 
  1. Makarov V.L., Khlobystov V.V. Foundations of polynomial operator interpolation theory, Kyiv: Institute of Mathematics of the NAS of Ukraine, 1998 (in Russian).
  2. Makarov V.L., Khlobystov V.V., Yanovich L.A. Interpolation of operators, Kyiv: Nauk. Dumka, 2000 (in Russian).
  3. Makarov V.L., Khlobystov V.V., Yanovich L.A. Methods of operator interpolation, Kyiv: Institute of Mathematics of the NAS of Ukraine, 2010.
  4. Kashpur O.F., Khlobystov V.V. J. Comput. Appl. Math., 2015, No 2: 8-14.
  5. Chapko R., Babenko C., Khlobystov V., Makarov V. Int. J. Comput. Math., 2014, 91, Iss. 8: 1673-1682. https://doi.org/10.1080/00207160.2013.858809
  6. Gikhman I.I., Skorokhod A.V. Theory of stochastic processes, Moscow: Nauka, 1971 (in Russian).
  7. Yegorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for computation of continual integrals, Minsk: Nauka i Tehnika, 1985 (in Russian).
  8. Berezin I.S., Zhidkov N.P. Methods of computations, Vol. 1, Moscow: Fizmatgiz, 1962 (in Russian).
  9. Babenko K.I. Foundations of numerical analysis, Moscow; Izhevsk: RC "Regular and chaotic dynamics", 2002 (in Russian).