The extremal problem for the area of an image of a disc

TitleThe extremal problem for the area of an image of a disc
Publication TypeJournal Article
Year of Publication2016
AuthorsSalimov, RR, Klishchuk, BA
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.10.022
Issue10
SectionMathematics
Pagination22-27
Date Published10/2016
LanguageRussian
Abstract

We study the ring Q-homeomorphisms with respect to p-modulus, p ˃ 2, in the complex plane and establish lower bounds for the area of an image of a disc. The extremal problem concerning a minimization of the area functional is solved.

Keywordsarea functional, capacitor, p-capacitance of a capacitor, p-modulus of a family of curves, ring Q-homeomorphisms
References: 
  1. Golberg A. Zbirnyk prats' In-tu matematyky NAN Ukraine, 2010, 7, No 2: 53-64.
  2. Salimov R., Sevost'yanov E. Complex Variables and Elliptic Equations, 2014, 59, Iss. 2: 217-231. https://doi.org/10.1080/17476933.2012.731397
  3. Salimov R.R. Algebra i Analiz, 2014, 26, No 6: 143—171 (in Russian).
  4. Lavrent'ev M.A. The variational method in boundary-value problems for systems of equations of elliptic type, Mos cow: Izd-vo AN SSSR, 1962 (in Russian).
  5. Bojarski B., Gutlyanskii V., Martio O., Ryazanov V. Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, Tracts in Mathematics, Vol. 19, Zürich: European Mathematical Society, 2013. https://doi.org/10.4171/122
  6. Lomako T.V., Salimov R.R. Zbirnyk prats' In-tu matematyky NAN Ukraine, 2010, 7, No 2: 264-269 (in Russian).
  7. Martio O., Rickman S., Väisälä J. Ann. Acad. Sci. Fenn. Ser. A1. Math., 1969, 448: 1-40.
  8. Maz'ya V. Contemp. Math., 2003, 338: 307-340. https://doi.org/10.1090/conm/338/06078
  9. Shlyk V.A. Sib. mat. zhurn., 1993, 34, No 6: 216-221 (in Russian).
  10. Gehring F.W. Advances in the theory of Riemann surfaces: Proc. of the 1969 Stony Brook conf., Annals of Mathematics Studies, Vol. 66: Princeton: Princeton Univ. Press, 1971: 175-193.