New generalizations of the zeta-function and the Tricomi funation

TitleNew generalizations of the zeta-function and the Tricomi funation
Publication TypeJournal Article
Year of Publication2016
AuthorsVirchenko, NO, Ponomarenko, AM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.12.005
Issue12
SectionMathematics
Pagination5-11
Date Published12/2016
LanguageUkrainian
Abstract

New generalizations of the zeta-function and the Tricomi function are presented, and their main properties are studied.
These new generalizations are realized with help of the (τ, β)-generalized confluent hypergeometric function.

Keywordsconfluent hypergeometric function, Tricomi function, zeta-function
References: 
  1. Andrews L.G. Special Function for Engineers and Applied Mathematics, New York: Macmillan Publ. Company, 1985.
  2. Andrews G., Askey R., Roy R. Special Function, New York: Cambridge Univ. Press, 1999. doi:https://doi.org/10.1017/CBO9781107325937
  3. Edwards H.M. Riemann's Zeta Function, New York: Academic Press, 1954.
  4. Ewell J.A. Amer. Math. Monthly, 1990, 97: 219-220. doi: https://doi.org/10.2307/2324688
  5. Titchmarsh E.C. The Theory of Riemann Zeta-Function, London: Oxford Univ. Press, 1951.
  6. Wright E.M. Proc. London Math. Soc, 1940, 46, No 2: 389-408. doi: https://doi.org/10.1112/plms/s2-46.1.389
  7. Virchenko N. Fract. Calculus and App. Anal., 2006, 9, No 2: 101-108.
  8. Virchenko N. The generalized hypergeometric functions, Kiev: NTU of Ukraine "KPI", 2016 (in Ukrainian).
  9. Bateman H., Erdelyi A. Higher Transcendental Functions, New York: McGraw-Hill, 1953, Vol. 1. PMid:13066029 PMCid:PMC1056899
  10. Tricomi F. Funzioni Ipergeometriche Confluenti, Monografie Matematiche, Bd. 1, Roma: Edizioni Cremonese, 1954.