Increasing the bearing capacity of ethanol as a component of alternative motor fuel: experiments and molecular modeling

TitleIncreasing the bearing capacity of ethanol as a component of alternative motor fuel: experiments and molecular modeling
Publication TypeJournal Article
Year of Publication2016
AuthorsBozhko, Ye.O, Yesylevskyy, SO, Cherniavskyi, Ye.K, Sheludko, Ye.V, Piljavsky, VS, Polunkin, Ye.V, Bogomolov, Yu.I
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.02.079
Issue2
SectionChemistry
Pagination79-86
Date Published2/2016
LanguageRussian
Abstract

A Schiff base containing fragments of D-glucose and benzoic acid is synthesized. It is shown that the introduction of this additive into ethyl alcohol — alternative fuels component — significantly (1.7–3.6 times) increases its bearing capacity. The effect of additives on the structure formation in ethanol is studied by the method of complete atomic classical molecular dynamics. Adding the additive to ethanol increases the mixture density and decreases the diffusion coefficient of ethanol. Structuring occurs due to the formation of complexes stabilized by hydrogen bonds, which consist of an additive molecule surrounded by a shell of ∼37 oriented ethanol molecules. Moreover, metastable dimers and trimers of an additive molecule are formed with a lifetime of about 0.5 ns.

Keywordsalternative fuel, hydrogen bonds, load-bearing capacity, molecular dynamics, Schiff base, structure formation
References: 
  1. Kovtun G. A. Visnik NAN Ukraine, 2005, No 2: 19–27 (in Ukrainian ).
  2. Piljavsky V. S., Polunkin E. V., Kameneva T. M. Kataliz i neftehimiâ, 2013, No 22: 37–41(in Russian).
  3. Ellis G. P. Chem. and Ind., 1966: 902– 903.
  4. Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4, No 3: 435–447. https://doi.org/10.1021/ct700301q
  5. Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. J. Comput. Chem., 2003, 24, No 16: 1999–2012. https://doi.org/10.1002/jcc.10349
  6. Sousa da Silva A. W., Vranken W. F. BMC Research Notes, 2012, 5, No 1: 367. https://doi.org/10.1186/1756-0500-5-367
  7. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  8. Bussi G., Donadio D., Parrinello M. J. Chem. Phys. , 2007, 126, N 1: 014101. https://doi.org/10.1063/1.2408420
  9. Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. J. Chem. Phys.,1984, 81, No 8: 3684–3690. https://doi.org/10.1063/1.448118
  10. Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. J. Comput. Chem., 2005, 26, No 16: 1701–1718. https://doi.org/10.1002/jcc.20291
  11. Yesylevskyy S. O. J. Comput. Chem., 2015, 33, No 19: 1632–1636. https://doi.org/10.1002/jcc.22989
  12. Yesylevskyy S. O. J. Comput. Chem., 2015, 36, No 19: 1480–1488. https://doi.org/10.1002/jcc.23943